JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Low Ruminal pH Reduces Dietary Fiber Digestion via Reduced Microbial Attachment
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Low Ruminal pH Reduces Dietary Fiber Digestion via Reduced Microbial Attachment
Sung, Ha Guyn; Kobayashi, Yasuo; Chang, Jongsoo; Ha, Ahnul; Hwang, Il Hwan; Ha, J.K.;
  PDF(new window)
 Abstract
In vitro rumen incubation studies were conducted to determine effects of initial pH on bacterial attachment and fiber digestion. Ruminal fluid pH was adjusted to 5.7, 6.2 and 6.7, and three major fibrolytic bacteria attached to rice straw in the mixed culture were quantified with real-time PCR. The numbers of attached and unattached Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminocococcus albus were lower (p<0.05) at initial pH of 5.7 without significant difference between those at higher initial pH. Lowering incubation media pH to 5.7 also increased bacterial numbers detached from substrate regardless of bacterial species. Dry matter digestibility, gas accumulation and total VFA production were pH-dependent. Unlike bacterial attachment, maintaining an initial pH of 6.7 increased digestion over initial pH of 6.2. After 48 h in vitro rumen fermentation, average increases in DM digestion, gas accumulation, and total VFA production at initial pH of 6.2 and 6.7 were 2.8 and 4.4, 2.0 and 3.0, and 1.2 and 1.6 times those at initial pH of 5.7, respectively. The lag time to reach above 2% DM digestibility at low initial pH was taken more times (8 h) than at high and middle initial pH (4 h). Current data clearly indicate that ruminal pH is one of the important determinants of fiber digestion, which is modulated via the effect on bacterial attachment to fiber substrates.
 Keywords
Bacterial Attachment;Fiber Digestion;pH;Fibrobacter succinogenes;Ruminococcus flavefaciens;Ruminocococcus albus;
 Language
English
 Cited by
1.
비이온성 계면활성제 Tween 80의 첨가가 반추위 혼합 미생물에 의한 in vitro 가스발생량, 건물소화율, 효소활력 및 미생물 성장율에 미치는 영향,이신자;김완영;문여황;김현섭;김경훈;하종규;이성실;

생명과학회지, 2007. vol.17. 12, pp.1660-1668 crossref(new window)
2.
Effects of Tween 80 Pretreatment on Dry Matter Disappearance of Rice Straw and Cellulolytic Bacterial Adhesion,;;;;;;;

아세아태평양축산학회지, 2007. vol.20. 9, pp.1397-1401 crossref(new window)
3.
Supplementing Maize or Soybean Hulls to Cattle Fed Rice Straw:Intake, Apparent Digestion, In situ Disappearance and Ruminal Dynamics,;;;;

아세아태평양축산학회지, 2008. vol.21. 6, pp.807-817 crossref(new window)
4.
Fibrolytic Rumen Bacteria: Their Ecology and Functions,;;

아세아태평양축산학회지, 2009. vol.22. 1, pp.131-138 crossref(new window)
5.
볏짚 조사료에 대한 효모 배양물 첨가가 반추위 소화율 및 섬유소 분해균의 군락 변화에 미치는 영향,성하균;

Journal of Animal Science and Technology, 2013. vol.55. 1, pp.41-49 crossref(new window)
6.
Effects of Methylcellulose on Cellulolytic Bacteria Attachment and Rice Straw Degradation in the In vitro Rumen Fermentation,;;;;;

아세아태평양축산학회지, 2013. vol.26. 9, pp.1276-1281 crossref(new window)
7.
Effects of Methylcellulose on Fibrolytic Bacterial Detachment and In vitro Degradation of Rice Straw,;;;;;

아세아태평양축산학회지, 2013. vol.26. 10, pp.1459-1465 crossref(new window)
8.
Real-Time PCR 기법을 이용한 반추위 섬유소분해 박테리아의 부착과 조사료 분해에 관한 연구,성하균;

한국초지조사료학회지, 2014. vol.34. 1, pp.60-67 crossref(new window)
1.
Effects of Methylcellulose on Fibrolytic Bacterial Detachment and In vitro Degradation of Rice Straw, Asian-Australasian Journal of Animal Sciences, 1970, 26, 10, 1459  crossref(new windwow)
2.
Use of Real-Time PCR Technique in Studying Rumen Cellulolytic Bacteria Population as Affected by Level of Roughage in Swamp Buffalo, Current Microbiology, 2009, 58, 4, 294  crossref(new windwow)
3.
Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: a preliminary study, Molecular Biology Reports, 2012, 39, 4, 4841  crossref(new windwow)
4.
Ruminal fermentation and microbial ecology of buffaloes and cattle fed the same diet, Animal Science Journal, 2012, 83, 12, 767  crossref(new windwow)
5.
Molecular analysis of the bacterial microbiome in the forestomach fluid from the dromedary camel (Camelus dromedarius), Molecular Biology Reports, 2013, 40, 4, 3363  crossref(new windwow)
6.
Dry chemical processing and ensiling of rice straw to improve its quality for use as ruminant feed, Tropical Animal Health and Production, 2013, 45, 5, 1215  crossref(new windwow)
7.
Effects of replacing barley grain with graded levels of wheat bran on rumen fermentation, voluntary intake and nutrient digestion in beef cattle, Canadian Journal of Animal Science, 2014, 94, 1, 129  crossref(new windwow)
8.
Characterization of the cellulolytic bacteria communities along the gastrointestinal tract of Chinese Mongolian sheep by using PCR-DGGE and real-time PCR analysis, World Journal of Microbiology and Biotechnology, 2015, 31, 7, 1103  crossref(new windwow)
9.
An Investigation into Rumen Fungal and Protozoal Diversity in Three Rumen Fractions, during High-Fiber or Grain-Induced Sub-Acute Ruminal Acidosis Conditions, with or without Active Dry Yeast Supplementation, Frontiers in Microbiology, 2017, 8, 1664-302X  crossref(new windwow)
10.
Alterations in ruminal bacterial populations at induction and recovery from diet-induced milk fat depression in dairy cows, Journal of Dairy Science, 2018, 101, 1, 295  crossref(new windwow)
11.
Volatile fatty acids and methane production from browse species of Algerian arid and semi-arid areas, Journal of Applied Animal Research, 2018, 46, 1, 44  crossref(new windwow)
 References
1.
Akin, D. E. and F. E. Barton. 1983. Rumen microbial attachment and degradation of plant cell walls. Fed. Proc. 42:114-121.

2.
Bae, H. D., T. A. McAllister, E. G. Kokko, F. L. Leggett, L. J. Yamke, K. D. Jakober, J. K. Ha, H. T. Shin and K. J. Cheng. 1997. Effect of silica on the colonization of rice straw by ruminal bacteria. Anim. Feed Sci. Technol. 65:165-181. crossref(new window)

3.
Bhat, S., R. J. Wallace and E. R. Orskov. 1990. Adhesion of cellulolytic ruminal bacteria to barley straw. Appl. Environ. Microbiol. 56:2698-2703.

4.
Bonhomme, A. 1990. Rumen ciliates: Their metabolism and relationships with bacteria and their hosts. Anim. Feed Sci. Technol. 30:203-266. crossref(new window)

5.
Cheng, K. -J., J. P. Fay, R. E. Howarth and J. W. Costerton. 1980. Sequence of events in the digestion of fresh legume leaves by rumen bacteria. Appl. Environ. Microbiol. 40:613-625.

6.
Cheng, K. -J., C. S. Stewart, D. Dinsdale and J. W. Costerton. 1984. Electron microscopy of bacteria involved in the digestion of plant cell walls. Anim. Feed Sci. Technol. 10:93-120. crossref(new window)

7.
Craig, W. M., G. A. Broderick and D. B. Ricker. 1987. Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. J. Nutr. 117:56-64.

8.
Forsberg, C. W. and R. Lam. 1977. Use of adenosine-5- triphosphate as an indicator of the microbial biomass in rumen contents. Appl. Environ. Microbiol. 33:528-534.

9.
Gong, J. and C. W. Forsberg. 1989. Factors affecting adhesion of Fibrobacter succinogenes S85 and adherence defective mutants to cellulose. Appl. Environ. Microbiol. 55:3039-3044.

10.
Grant, R. J. and S. J. Weidner. 1992. Digestion kinetics of fiber: Influence of in vitro buffer pH varied within observed physiological range. J. Dairy Sci. 75:1060-1068.

11.
Hu, Z. -H., H. -Q. Tu and R. -F. Zhu. 2005. Influence of particle size and pH on anaerobic degradation of cellulose by rumen microbes. Int. Biodeter. Biodegr. 55:233-238. crossref(new window)

12.
Khampa, S., M. Wanapat, C. Wachirapakorn, N. Nontasol, M. A. Wattiaux and P. Rowlison. 2006. Effect of leve;s of sodium DL-malate supplementation on ruminal fermentation efficiency of concentrates containing high levels of cassava chip in dairy steers. Asian-Aust. J. Anim. Sci. 19:368-375.

13.
Kobayashi, Y., S. Koike, H. Taguchi, H. Itabashi, Dong K. Kam and J. K. Ha. 2004. Recent advances in gut microbiology and their possible contribution to animal health and production-Review. Asian-Aust. J. Anim. Sci. 17:877-884.

14.
Koike, S. and Y. Kobayshi. 2001. Development and use of competitive PCR asays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEM Microbiol. Letters. 204:361- 366. crossref(new window)

15.
Koike, S., J. Pan, Y. Kobayashi and K. Tanaka. 2003. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J. Dairy Sci. 86:1429- 1435. crossref(new window)

16.
Latham, M. J., B. E. Brooker, G. L. Petipher and P. J. Harris. 1978. Ruminoccocus flavefaciens cell coat and adhesion to cotton cellulose and cell leaves of perennial ryegrass. Appl. Environ. Microbiol. 35:156-165.

17.
McAllister, T. A., H. D. Bae, G. A. Jines and K. -J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-30018.

18.
McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109.

19.
Minato, H., M. Mitsumori and K. J. Cheng. 1993. Attachment of microorganisms to solid substrates in the rumen. pp. 139-145 in Proc. Mie bioforum on Genetics, Biochemistry and Ecology of Lignocellulose Degradation. Uni Publisher, Tokyo.

20.
Miron, J. and C. W. Forsberg. 1998. Features of Fibrobacter intestinalis DR7 mutant which is impaired with its ability to adhere to cellulose. Anaerobe 4:35-43. crossref(new window)

21.
Miron, J., D. Ben-Ghedalia and M. Morrison. 2001. Invited Review: Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84:1294-1309. crossref(new window)

22.
Morris, E. J. 1988. Charateristics of the adhesion of Ruminococcus albus to cellulose. FEMS Microbiol. Letters. 51:113-117. crossref(new window)

23.
Morris, E. J. and O. J. Cole. 1987. Relationships between cellulolytic activity and adhesion to cellulose in Ruminococus albus. J. Gen. Microbiol. 133:1023-1032.

24.
Mould, F. L. and E. R. Orskov. 1983. Manipulation of rumen fluid pH and its influence on cellulolysis in sacco, dry matter degradation and the rumen microflora of sheep offered either hay or concentrate. Anim. Feed Sci. Technol. 10:1-14. crossref(new window)

25.
Mould, F. L., E. R. Orskov and S. O. Mann 1984. Associative effects of mixed feeds. I Effects of type and level of supplementation and the influence of the rumen pH on cellulolysis in vivo and dry matter degradation of various roughages. Anim. Feed Sci. Technol. 10:15-20. crossref(new window)

26.
Mourino, F., R. Akkarawongsa and P. J. Weimer. 2001. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. J. Dairy Sci. 84:848-859. crossref(new window)

27.
Pan, J., S. Koike, T. Suzuki, K. Ueda, Y. Kobayashi, K. Tanaka and Okubo. 2003. Effect of mastication on degradation of orchardgrass hay stem by rumen microbes: fibrolytic enzyme activities and microbial attachment. Anim. Feed Sci. Technol. 106:69-79. crossref(new window)

28.
Pell, A. N. and P. Schofield. 1993. Microbial adhesion and degradation of plant cell walls. pp. 397-423 in Forage Cell Wall Structure and Digestibility. ASA-CSSA-SSSA, Madison, WI.

29.
Purdy, K. J., T. M. Embley, S. Takii and D. B. Nedwell. 1996. Rapid extraction of DNA and RNA from sediments by novel hydroxyapatite spin-colum method. Appl. Environ. Microbial. 62:3905-3970.

30.
Roger, V. R., G. Fonty, S. Komisarczuk-Bondy and P. Gouet. 1990. Effects of physicochemical factors on the adhesion to cellulose avicel of the rumen bacteria Ruminococcus flavefaciens and Fibrobactor succinogenes subsp. succinogenes. Appl. Environ. Microbiol. 56:3081-3087.

31.
Russell, J. B. and D. B. Wilson. 1996. Why are cellulolytic bacteria unable to digest at low pH? J. Dairy Sci. 79:1503-1509. crossref(new window)

32.
Russell, J. B. and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Sci. 292:1119-1122. crossref(new window)

33.
SAS (Statistical Analysis System Institute). 1989. SAS/STATTM User's Guide: Statistics, Version 6, 4th Edition. Vol. 2, Cary, NC.

34.
Slyter, L. L. 1986. The ability of pH-selected mixed ruminal microbial population to digest fiber at various pHs. Appl. Environ. Microbiol. 52:390-391.

35.
Srinivas, B. and U. Krishnamoorthy. 2005. Influence of diet induced changes in rumen microbial characteristics on gas production kinetics of straw substrates in vitro. Asian-Aust. J. Anim. Sci. 18:990-996.

36.
Stewart, C. S., S. H. Duncan and H. J. Flint. 1990. The properties of forms of Ruminococcus flavefaciens which differ in their ability to degrade cotton cellulose. FEMS Microbiol. Lett. 72:47-50. crossref(new window)

37.
Sung, H. G., D. M. Min, D. K. Kim, D. Y. Li, H. J. Kim, S. D. Upadhaya and J. K. Ha. 2006. Influence of transgenic corn on the in vitro rumen microbial fermentation. Asian-Aust. J. Anim. Sci. 19:1761-1768.

38.
Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67:2766-2774. crossref(new window)

39.
Weimer, P. J. 1996. Why don't ruminal bacterial digest cellulose faster? J. Dairy Sci. 79:1496-1502. crossref(new window)