JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Disodium Fumarate on In vitro Rumen Fermentation of Different Substrates and Rumen Bacterial Communities as Revealed by Denaturing Gradient Gel Electrophoresis Analysis of 16S Ribosomal DNA
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Disodium Fumarate on In vitro Rumen Fermentation of Different Substrates and Rumen Bacterial Communities as Revealed by Denaturing Gradient Gel Electrophoresis Analysis of 16S Ribosomal DNA
Mao, S.Y.; Zhang, G.; Zhu, W.Y.;
  PDF(new window)
 Abstract
Two experiments were conducted to investigate the effects of disodium fumarate on the in vitro rumen fermentation profiles of different substrates and microbial communities. In experiment 1, nine diets (high-forage diet (forage:concentrate, e.g. F:C = 7:3, DM basis), medium-forage diet (F:C = 5:5, DM basis), low-forage diet(F:C = 1:9, DM basis), cracked corn, cracked wheat, soluble starch, tall elata (Festuca elata), perennial ryegrass and rice straw) were fermented in vitro by rumen microorganisms from local goats. The results showed that during 24 h incubations, for all substrates, disodium fumarate increased (p<0.05) the gas production, and tended to increase (p<0.10) the acetate, propionate and total VFA concentration and decrease the ratio of acetate to propionate, whereas no treatment effect was observed for the lactate concentration. The apparent DM loss for tall elata, perennial ryegrass and rice straw increased (p<0.05) with the addition of disodium fumarate. With the exception of tall elata, perennial ryegrass and rice straw, disodium fumarate addition increased the final pH (p<0.05) for all substrates. In experiment 2, three substrates (a high-forage diet, a medium-forage diet and a high concentrate diet) were fermented by mixed rumen microbes in vitro. A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique was applied to compare microbial DNA fingerprints between substrates at the end of 24 h incubation. The results showed that when Festuca elata was used as substrate, the control and disodium fumarate treatments had similar DGGE profiles, with their similarities higher than 96%. As the ratio of concentrate increased, however, the similarities in DGGE profiles decreased between the control and disodium fumarate treatment. Overall, these results suggest that disodium fumarate is effective in increasing the pH and gas production for the diets differing in forage: concentrate ratio, grain cereals and soluble starch, and in increasing dry matter loss for the forages (tall elata, perennial ryegrass and rice straw) in vitro, whereas its effect on changes of ruminal microbial community may largely depend on the general nature of the substrate.
 Keywords
Disodium Fumarate;In vitro Fermentation;Denaturing Gradient Gel Electrophoresis;
 Language
English
 Cited by
1.
Linolenic Acid in Association with Malate or Fumarate Increased CLA Production and Reduced Methane Generation by Rumen Microbes,;;;;;;;

Asian-Australasian Journal of Animal Sciences, 2009. vol.22. 6, pp.819-826 crossref(new window)
2.
Effect of Total Mixed Ration with Fermented Feed on Ruminal In vitro Fermentation, Growth Performance and Blood Characteristics of Hanwoo Steers,;;;;;;;;

Asian-Australasian Journal of Animal Sciences, 2012. vol.25. 2, pp.213-223 crossref(new window)
3.
Effect of Gynosaponin on Rumen In vitro Methanogenesis under Different Forage-Concentrate Ratios,;;;;

Asian-Australasian Journal of Animal Sciences, 2014. vol.27. 8, pp.1088-1097 crossref(new window)
4.
Effects of Acarbose Addition on Ruminal Bacterial Microbiota, Lipopolysaccharide Levels and Fermentation Characteristics In vitro,;;;;

Asian-Australasian Journal of Animal Sciences, 2014. vol.27. 12, pp.1726-1735 crossref(new window)
 References
1.
Asanuma, N., M. Iwamoto and T. Hino. 1999. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82:780-787. crossref(new window)

2.
Baker, S. B. and W. H. Summerson. 1941. The colorimetric determination of lactic acid in biological material. J. Biol. Chem. 138:535-555.

3.
Callaway, T. R. and S. A. Martin.1996. Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked maize. J. Anim. Sci. 74:1982-1989.

4.
Carro, M. D. and M. J. Ranilla. 2003. Effect of the addition of malate on in vitro rumen fermentation of cereal grains. Br. J. Nutr. 89:181-188. crossref(new window)

5.
Castillo, C., J. L. Benedito, J. Mendezb, V. Pereira, M. Lopez- Alonso, M. Miranda and J. Hernandez. 2004. Organic acids as a substitute for monensin in diets for beef cattle. Anim. Feed. Sci. Tech. 115:101-116. crossref(new window)

6.
Gillan, D. C., G. A. Speksnijder, G. Zwart and C.de. Ridder. 1998. Genetic diversity of the biofilm covering Montacuta ferruginosa (Mollusca,Bivalvia) as evaluated by denaturing gradient gel electrophoresis analysis and cloning of PCRamplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 64:3464-3472.

7.
Khampa, S., M. Wanapat, C. Wachirapakorn, N. Nontaso, M. A. Wattiaux and P. Rowlison. 2006. Effect of levels of sodium DL-malate supplementation on ruminal fermentation efficiency of concentrates containing high levels of cassava chip in dairy steers. Asian-Aust. J. Anim. Sci. 19:368-375.

8.
Lopez, C., C. Valdes, C. J. Newbold and R. J. Wallace. 1999. Influence of sodium fumarate addition on rumen fermentation in vitro. Br. J. Nutr. 81:59-64.

9.
Martin, S. A. and C. M. Park. 1996. Effect of extracellular hydrogen on organic acid utilization by the ruminal bacterium Selenomonas ruminantium. Curr. Microbiol. 32:327-331. crossref(new window)

10.
Martin, S. A. 1998. Manipulation of ruminal fermentation with organic acids: a review. J. Anim. Sci. 76:3123-3132.

11.
Muyzer, G., E. C. de Waal and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes encoding for 16s rRNA. Appl. Environ. Microbiol. 59:695-700.

12.
Nisbet, D. J. and S. A. Martin. 1990. Effect of dicarboxylic acids and Aspergillus oryzae fermentation extract on lactate uptake by the ruminal bacterium Selenomonas ruminantium. Appl. Environ. Microbiol. 56:3515-3518.

13.
Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymixa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178:5636-5643.

14.
Phipps, R. H., J. I. D. Wilkinson, L. J. Jonker, M. Tarrant, A. K. Jones and A. Hodge. 2000. Effect of monensin on milk production of holstein-friesian dairy cows. J. Dairy Sci. 83:2789-2794. crossref(new window)

15.
Qin, W. L. 1983. Determination of rumen volatile fatty acids by means of gas chromatography. (in Chinese, with English abstract). J. Nanjing Agric. College. 3:82-89.

16.
Russell, J. B. and P. J. van Soest. 1984. In vitro ruminal fermentation of organic acids common in forage. Appl. Environ. Microbiol. 47:155-159.

17.
Russell, J. B. and H. J. Strobel. 1988. Effects of additives on in vitro ruminal fermentation: A comparison of monensin and bacitracin, another gram-positive antibiotic. J. Anim. Sci. 66:552-558.

18.
Russell, J. B. and H. J. Strobel. 1989. Effects of ionophores on ruminal fermentation. Appl. Environ. Microbiol. 55:1-6.

19.
Sanguinetti, C. J., N. E. Dias and A. J. Simpson. 1994. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechnuques. 17:914-921.

20.
Simpson, J. M., V. J. McCracken, B. A. White, H. R. Gaskin and R. I. Mackie. 1999. Application of denaturing gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J. Microbiol. Meth. 36:167-179. crossref(new window)

21.
Singh, G. P. and D. Debasis. 2005. Effect of different level of monensin supplemented with cold process urea molasses mineral block on in vitro rumen fermentation at different days of adaptation with monensin. Asian-Aust. J. Anim. Sci. 18:320-325.

22.
Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feed. Anim. Feed. Sci. Technol. 48:185-197. crossref(new window)

23.
Vaughan, E. E., G. H. J. Heilig, E. G. Zoetendal, R. Satokari, J. K. Collins, A. D. L. Akkermans and W. M. de Vos. 1999. Molecular approaches to study probiotic bacteria. Trends Food Sci. Technol. 10:400-404. crossref(new window)

24.
Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39:971-974. crossref(new window)

25.
Zhu, W. Y., B. A. Williams, S. R. Konstantinov, S. Tamminga, de Vos. W. M and A. D. Akkermans. 2003. Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum. Anaerobe. 9:175-180. crossref(new window)

26.
Zoetendal, E. G.., A. D. L. Akkermans and W. M. de Vos. 1998. Temperature gradient gel electrophoresis analysis of 16s rRNA from human faecal samples reveals stable and host specific communities of active bacteria. Appl. Environ. Microbiol. 64:3854-3859.