Advanced SearchSearch Tips
Detection of Mendelian and Parent-of-origin Quantitative Trait Loci in a Cross between Korean Native Pig and Landrace I. Growth and Body Composition Traits
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Detection of Mendelian and Parent-of-origin Quantitative Trait Loci in a Cross between Korean Native Pig and Landrace I. Growth and Body Composition Traits
Kim, E.H.; Choi, B.H.; Kim, K.S.; Lee, C.K.; Cho, B.W.; Kim, T.-H.; Kim, J.-J.;
  PDF(new window)
This study was conducted to detect quantitative trait loci (QTL) affecting growth and body composition in an reference population of Korean native pig and Landrace crossbreds. The three-generation mapping population was generated with 411 progeny from 38 full-sib families, and 133 genetic markers were used to produce a sex-average map of the 18 autosomes. The data set was analyzed using least squares Mendelian and parent-of-origin interval-mapping models. Lack-of-fit tests between the models were used to characterize QTL for mode of expressions. A total of 8 (39) QTL were detected at the 5% genome (chromosome)-wise level for the 17 analyzed traits. Of the 47 QTL detected, 21 QTL were classified as Mendelian expressed, 13 QTL as paternally expressed, 6 QTL as maternally expressed, and 7 QTL as partially expressed. Of the detected QTL at 5% genome-wise level, two QTL had Mendelian mode of inheritance on SSC6 and SSC9 for backfat thickness and bone weight, respectively, two QTL were maternally expressed for leather weight and front leg weight on SSC6 and SSC12, respectively, one QTL was paternally expressed for birth weight on SSC4, and three QTL were partially expressed for hot carcass weight and rear leg weight on SSC6, and bone weight on SSC13. Many of the Mendelian QTL had a dominant (complete or overdominant) mode of gene action, and only a few of the QTL were primarily additive, which reflects that heterosis for growth is appreciable in a cross between Korean native pig and Landrace. Our results indicate that alternate breed alleles of growth and body composition QTL are segregating between the two breeds, which could be utilized for genetic improvement of growth via marker-assisted selection.
Quantitative Trait Loci;Swine;Growth;Korean Native Pig;Landrace;
 Cited by
A Whole Genome Association Study on Meat Quality Traits Using High Density SNP Chips in a Cross between Korean Native Pig and Landrace,Lee, K.T.;Lee, Y.M.;Alam, M.;Choi, B.H.;Park, M.R.;Kim, K.S.;Kim, T.H.;Kim, Jong-Joo;

Asian-Australasian Journal of Animal Sciences, 2012. vol.25. 11, pp.1529-1539 crossref(new window)
Evaluation of Reciprocal Cross Design on Detection and Characterization of Non-Mendelian QTL in $F_2$ Outbred Populations: I. Parent-of-origin Effect,Lee, Yun-Mi;Lee, Ji-Hong;Kim, Jong-Joo;

Asian-Australasian Journal of Animal Sciences, 2007. vol.20. 12, pp.1805-1811 crossref(new window)
Evaluation of Reciprocal Cross Design on Detection and Characterization of Mendelian QTL in $F_2$ Outbred Populations,Lee, Yun-Mi;Kim, Eun-Hee;Kim, Jong-Joo;

Asian-Australasian Journal of Animal Sciences, 2007. vol.20. 11, pp.1625-1630 crossref(new window)
돼지 Cytochrome P450 (CYP2A6) 유전자 내의 단일염기변이 발굴 및 고기내 불포화 지방산 조성에 미치는 영향,노정건;김상욱;김관석;

농업과학연구, 2011. vol.38. 4, pp.689-693
Amphiregulin (AREG) Genotypes, Allele Frequencies and the First Parity Litter Size in the Pig,Kim, Du-Wan;Nam, Yoon Seok;Park, Hee-Bok;Kim, Jong Gug;

한국수정란이식학회지, 2015. vol.30. 2, pp.91-97 crossref(new window)
Length polymorphism in OGT between Korean native pig, Chinese Meishan, and the Western pig breeds,Nam, Yoon Seok;Kim, Doo-Wan;Kim, Myoung-Jik;Cho, Kyu-Ho;Kim, Jong Gug;

Journal of Animal Science and Technology, 2015. vol.57. 3, pp.12.1-12.5 crossref(new window)
Characterization of QTL for Growth and Meat Quality in Combined Pig QTL Populations,Li, Y.;Choi, B.H.;Lee, Y.M.;Alam, M.;Lee, J.H.;Kim, K.S.;Baek, K.H.;Kim, J.J.;

Asian-Australasian Journal of Animal Sciences, 2011. vol.24. 12, pp.1651-1659 crossref(new window)
Detection of Mendelian and Parent-of-origin Quantitative Trait Loci for Meat Quality in a Cross between Korean Native Pig and Landrace,Choi, B.H.;Lee, Y.M.;Alam, M.;Lee, J.H.;Kim, T.H.;Kim, K.S.;Kim, J.J.;

Asian-Australasian Journal of Animal Sciences, 2011. vol.24. 12, pp.1644-1650 crossref(new window)
Porcine Fatty Acid Synthase Gene Polymorphisms Are Associated with Meat Quality and Fatty Acid Composition,Kim, Sang-Wook;Choi, Yang-Il;Choi, Jung-Suck;Kim, Jong-Joo;Choi, Bong-Hwan;Kim, Tae-Hun;Kim, Kwan-Suk;

한국축산식품학회지, 2011. vol.31. 3, pp.356-365 crossref(new window)
Differential Expression of Cytochrome P450 Genes Regulate the Level of Adipose Arachidonic Acid in Sus Scrofa,Choi, Kyung-Mi;Moon, Jin-Kyoo;Choi, Seong-Ho;Kim, Kwan-Suk;Choi, Yang-Il;Kim, Jong-Joo;Lee, Cheol-Koo;

Asian-Australasian Journal of Animal Sciences, 2008. vol.21. 7, pp.967-971 crossref(new window)
Single-minded 1 Gene Mapping and Its Variants Association with Growth, Carcass Composition and Meat Quality Traits in the Pig,Zhao, X.F.;Xu, N.Y.;Chen, Z.;Wang, Q.;Guo, X.L.;

Asian-Australasian Journal of Animal Sciences, 2008. vol.21. 7, pp.941-946 crossref(new window)
Multifactor Dimensionality Reduction (MDR) Analysis to Detect Single Nucleotide Polymorphisms Associated with a Carcass Trait in a Hanwoo Population,Lee, Jea-Young;Kwon, Jae-Chul;Kim, Jong-Joo;

Asian-Australasian Journal of Animal Sciences, 2008. vol.21. 6, pp.784-788 crossref(new window)
Detection of QTL on Bovine X Chromosome by Exploiting Linkage Disequilibrium,Kim, Jong-Joo;

Asian-Australasian Journal of Animal Sciences, 2008. vol.21. 5, pp.617-623 crossref(new window)
Identification of SNPs Affecting Porcine Carcass Weight with the 60K SNP Chip,Kang, Kwon;Seo, Dong-Won;Lee, Jae-Bong;Jung, Eun-Ji;Park, Hee-Bok;Cho, In-Cheol;Lim, Hyun-Tae;Lee, Jun Heon;

Journal of Animal Science and Technology, 2013. vol.55. 4, pp.231-235 crossref(new window)
Bidanel, J., D. Milan, N. Iannuccelli, Y. Amigues, M. Boscher, F. Bourgeois, J. Caritez, J. Gruand, P. Le Roy, H. Lagant, R. Quintanilla, C. Renard, J. Gellin, L. Ollivier and C. Chevalet. 2001. Detection of quantitative trait loci for growth and fatness in pigs. Genet. Sel. Evol. 33:289-309. crossref(new window)

Bidanel, J. P. and M. Rothschild. 2002. Current status of quantitative trait locus mapping in pigs. Pig News and Information 23(2):39N-53N.

Cameron, N. D. 1994. The value of pig selection experiments. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production 19:41-48.

Choi, B. H., J. S. Lee, G. W. Jang, H. Y. Lee, J. W. Lee, K. T. Lee, H. Y. Chung, H. S. Park, S. J. Oh, S. S. Sun, K. H. Myung, I. C. Cheong and T. H. Kim. 2006. Mapping of the porcine Calpastatin gene and association study of its variance with economic traits in pigs. Asian-Aust. J. Anim. Sci. 19:1085-1089.

Choy, Y. H., G. J. Jeon, T. K. Kim, B. H. Choi and H. W. Chung. 2002a. Ear type and coat color on growth performances of crossbred pigs. Asian-Aust. J. Anim. Sci. 15:1178-1181.

Choy, Y. H., G. J. Jeon, T. K. Kim, B. H. Choi, I. C. Cheong, H. K. Lee, K. S. Seo, S. D. Kim, Y. I. Park and H. W. Chung. 2002b. Genetic analyses of carcass characteristics in crossbred pigs: cross between Landrace sows and Korean wild boars. Asian-Aust. J. Anim. Sci. 15:1080-1084.

De Koning, D. J., L. L. G. Janss, A. P. Rattink, P. A. M. van Oers, B. J. de Vries, M. A. M. Groenen, J. J. van der Poel, P. N. de Groot, E. W. Brascamp and J. A. M. van Arendonk. 1999. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genet. 152:1679-1690.

De Koning, D. J., A. P. Rattink, B. Harlizius, J. A. M. van Arendonk, E. W. Brascamp and M. A. M. Groenen. 2000. Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc. Natl. Acad. Sci. USA 97:7947-7950. crossref(new window)

Edwards, D. B., R. O. Bates and W. N. Osburn. 2003. Evaluation of Duroc- vs. Pietrain-sired pigs for carcass and meat quality measures. J. Anim. Sci. 81:1895-1899.

Green, P., K. Fallis and S. Crooks. 1994. Documentation for CRIMAP version 2.4, Washington University School of Medicine, St. Louis, MO.

Haley, C. S., S. A. Knott and J.-M. Elsen. 1994. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genet. 136:1195-1207.

Kim, J.-J., M. F. Rothschild, J. Beever, S. Rodriguez-Zas and J. C. M. Dekkers. 2005a. Joint analysis of two breed cross populations in pigs to improve detection and characterization of quantitative trait loci. J. Anim. Sci. 83:1229-1240.

Kim, J.-J. H. Zhao, H. Thomsen, M. F. Rothschild and J. C. M. Dekkers. 2005b. Combined line-cross and half-sib QTL analysis of crosses between outbred lines. Genet. Res. 85:235-248. crossref(new window)

Kim, T. H., K. S. Kim, B. H. Choi, D. H. Yoon, G. W. Jang, K. T. Lee, H. Y. Chung, H. Y. Lee, H. S. Park and J. W. Lee. 2005c. Genetic structure of pig breeds from Korea and China using microsattellite loci analysis. J. Anim. Sci. 83:2255-2263.

Knott, S. A., L. Marklund, C. S. Haley, K. Andersson, W. Davis, H. Ellegren, M. Fredholm, I. Hansson, B. Hoyheim, K. Lundstrom, M. Moller and L. Andersson. 1998. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and Large White pigs. Genet. 149:1069-1080.

McElroy, J. P., J.-J. Kim, D. E. Harry, S. R. Brown, J. C. M. Dekkers and S. J. Lamont. 2006. Identification of trait loci affecting white meat parentage and other growth and carcass traits in commercial broiler chickens. Poult. Sci. 85:593-605.

McLaren, D. G., D. S. Buchanan and R. K. Johnson. 1987. Growth performance for four breeds of swine: crossbred females and purebred and crossbred boars. J. Anim. Sci. 64:99-108.

Moore, T. and D. Haig. 1991. Genomic imprinting in mammalian development: A parental tug-of-war. Trends Genet. 7:45-49.

Ovilo, C., A. Oliver, J. L. Noguera, A. Clop, C. Barragan, L. Varona, C. Rodriguez, M. Toro, A. Sanchez, M. Perez-Enciso and L. Silio. 2002. Test for positional candidate genes for body composition on pig chromosome 6. Genet. Sel. Evol. 34:465-79. crossref(new window)

Rohrer, G. and J. Keele. 1998. Identification of quantitative trait loci affecting carcass composition in swine. I. Fat deposition trait. J. Anim. Sci. 76:2247-2254.

Sato S, Y. Oyamada, K. Atsuji, T. Nade, S. Sato, E. Kobayashi, T. Mitsuhashi, K. Nirasawa, A. Komatsuda, Y. Saito, S. Terai, T. Hayashi and Y. Sugimoto. 2003. Quantitative trait loci analysis for growth and carcass traits in a Meishan$\times$Duroc F2 resource population. J. Anim. Sci. 81:2938-2949.

Su Y.-H., M. A. Baoyu and Y.-Z. Xiong. 2004. Genetic location of body composition traits in pigs. Hereditas (Beijing) 26(2):163-166.

Thomsen, H., H. K. Lee, M. F. Rothschild, M. Malek and J. C. M. Dekkers. 2004. Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine. J. Anim. Sci. 82:2213-2228.

Van Laere, A. S., M. Nguyen, M. Braunschweig, C. Nezer, C. Collette, L. Moreau, A. L. Archibald, C. S. Haley, N. Buys, M. Tally, G. Andersson, M. Georges and L. Andersson. 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832-836. crossref(new window)

Walling, G. A., P. M. Visscher, L. Andersson, M. F. Rothschild, L. Wang, G. Moser, M. A. M. Groenen, J.-P. Bidanel, S. Cepica, A. L. Archibald, H. Geldermann, D. J. de Koning, D. Milan and C. S. Haley. 2000. Combined analyses of data from quantitative trait loci mapping studies: chromosome 4 effects on porcine growth and fatness. Genet. 155:1369-1378.

Yue, G., A. Stratil, M. Kopecny, D. Schroffelova, J. Schroffel Jr., J. Hojny, S Cepica, R. Davoli, P. Zambonelli, C. Brunsch, I. Sternstein, G. Moser, H. Bartenschlager, G. Reiner and H. Geldermann. 2003. Linkage and QTL mapping for Sus scrofa chromosome 6. J. Anim. Breed. Genet. 120(Suppl. 1):45-55. crossref(new window)