Advanced SearchSearch Tips
Fibrobacter succinogenes, a Dominant Fibrolytic Ruminal Bacterium: Transition to the Post Genomic Era
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fibrobacter succinogenes, a Dominant Fibrolytic Ruminal Bacterium: Transition to the Post Genomic Era
Jun, H.S.; Qi, M.; Ha, J.K.; Forsberg, C.W.;
  PDF(new window)
Fibrobacter succinogenes, a Gram-negative, anaerobic ruminal bacterium is a major fibre digesting species in the rumen. It intensively degrades plant cell walls by an erosion type of mechanism, burrowing its way through the complex matrix of cellulose and hemicellulose with the release of digestible and undigested cell wall fragments. The enzymes involved in this process include a combination of glucanases, xylanases, arabinofuranosidase(s) and esterases. The genome of the bacterium has been sequenced and this has revealed in excess of 100 putative glycosyl hydrolase, pectate lyase and carbohydrate esterase genes, which is greater than the numbers reported present in other major cellulolytic organisms for which genomes have been sequenced. Modelling of the amino acid sequences of two glycanases, CedA and EGB, by reference to crystallized homologs has enabled prediction of the major features of their tertiary structures. Two dimensional gel electrophoresis in conjunction with mass spectroscopy has permitted the documentation of proteins over expressed in F. succinogenes grown on cellulose, and analysis of the cell surfaces of mutant strains unable to bind to cellulose has enabled the identification of candidate proteins with roles in adhesion to the plant cell wall substrate, the precursor to cellulose biodegradation.
Cellulose;Cell Walls;Fibrobacter succinogenes;Cellulase;Xylanase;Fibrobacter intestinalis;
 Cited by
Fibrolytic Rumen Bacteria: Their Ecology and Functions,;;

아세아태평양축산학회지, 2009. vol.22. 1, pp.131-138 crossref(new window)
Application of rumen microbial genome information to livestock systems in the postgenomic era, Australian Journal of Experimental Agriculture, 2008, 48, 7, 695  crossref(new windwow)
Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis, Nature Reviews Microbiology, 2008, 6, 2, 121  crossref(new windwow)
The Glycobiome of the Rumen Bacterium Butyrivibrio proteoclasticus B316T Highlights Adaptation to a Polysaccharide-Rich Environment, PLoS ONE, 2010, 5, 8, e11942  crossref(new windwow)
The Complete Genome Sequence of Fibrobacter succinogenes S85 Reveals a Cellulolytic and Metabolic Specialist, PLoS ONE, 2011, 6, 4, e18814  crossref(new windwow)
The Early Impact of Genomics and Metagenomics on Ruminal Microbiology, Annual Review of Animal Biosciences, 2015, 3, 1, 447  crossref(new windwow)
Metagenomic analysis reveals the influences of milk containing antibiotics on the rumen microbes of calves, Archives of Microbiology, 2017, 199, 3, 433  crossref(new windwow)
Amann, R. I., C. Lin, R. Key, L. Montgomery and D. A. Stahl. 1992. Diversity among Fibrobacter isolates: Towards a phylogenetic classification. Syst. Appl. Microbiol. 15:23-31. crossref(new window)

Barriere, Y., C. Guillet, D. Goffner and M. Pichon. 2003. Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. Anim. Res. 52:193-228. crossref(new window)

Bera-Maillet, C., Y. Ribot and E. Forano. 2004. Fiber-degrading systems of different strains of the genus Fibrobacter. Appl. Environ. Microbiol. 70:2172-2179. crossref(new window)

Bourquin, L. D. and G. C. Fahey, Jr. 1994. Ruminal digestion and glycosyl linkage patterns of cell wall components from leaf and stem fractions of alfalfa, orchardgrass, and wheat straw. J. Anim. Sci. 72:1362-1374. crossref(new window)

Broussolle, V., E. Forano, G. Gaudet and Y. Ribot. 1994. Gene sequence and analysis of protein domains of EGB, a novel family E endoglucanase from S85. FEMS Microbiol. Lett. 124:439-447. crossref(new window)

Casler, M. D., D. R. Buxton and K. P. Vogel. 2002. Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor. Appl. Genet. 104:127-131. crossref(new window)

Cheng, K.-J., C. S. Stewart, D. Dinsdale and J. W. Costerton. 1983. Electron microscopy of bacteria involved in the digesion of plant cell walls. Anim. Feed Sci. Technol. 10:93-120. crossref(new window)

Cosgrove, D. J. 2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell. Biol. 6:850-861. crossref(new window)

Dehority, B. A. and P. A. Tirabasso. 1998. Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose. J. Anim. Sci. 76:2905-2911. crossref(new window)

Doi, R. H. and A. Kosugi. 2004. Cellulosomes: plant-cell-walldegrading enzyme complexes. Nat. Rev. Microbiol. 2:541-551. crossref(new window)

Dominguez, R., H. Souchon, M. B. Lascombe and P. M. Alzari. 1996. The crystal structure of a family 5 endoglucanase mutant in complexed and uncomplexed forms reveals an induced fit activation mechanism. J. Mol. Biol. 257:1042-1051. crossref(new window)

Forano, E., V. Broussolle, G. Gaudet and J. A. Bryant. 1994. Molecular cloning, expression, and characterization of a new endoglucanase gene from Fibrobacter succinogenes S85. Curr. Microbiol. 28:7-14. crossref(new window)

Forsberg, C. W., K.-J. Cheng and B. A. White. 1997. Polysaccharide degradation in the rumen and large intestine. In: Gastrointestinal Microbiology (Ed. R. I. Mackie and B. A. White). Chapman and Hall. New York. pp. 319-379.

Forsberg, C. W., E. Forano and A. Chesson. 2000. Microbial adherence to plant cell wall and enzymatic hydrolysis. In: Ruminant physiology digestion, metabolism, growth and reproduction (Ed. P. B. Cronje). CABI Publishing. Wallingford, Oxon. pp. 79-98.

Gardner, P. T., T. M. Wood, A. Chesson and T. Stuchbury. 1999. Effect of degradation on the porosity and surface area of forage cell walls of differing lignin content. J. Sci. Food Agric. 79:11-18. crossref(new window)

Gong, J. and C. W. Forsberg. 1989. Factors affecting adhesion of Fibrobacter succinogenes subsp. succinogenes S85 and adherence-defective mutants to cellulose. Appl. Environ. Microbiol. 55:3039-3044.

Grabber, J. H., J. Ralph, C. Lapierre and Y. Barriere. 2004. Genetic and molecular basis of grass cell-wall degradability. I. Lignincell wall matrix interactions. C. R. Biol. 327:455-465. crossref(new window)

Huang, L. and C. W. Forsberg. 1987. Isolation of a cellodextrinase from Bacteroides succinogenes. Appl. Environ. Microbiol. 54:1488-1493.

Huhtanen, P., S. Ahvenjarvi, M. R. Weisbjerg and P. NOrgaard. 2006. Digestion and passage of fibre in ruminants. In: Ruminant physiology: Digestion, metabolism and impact of nutrition on gene expression, immunology and stress (Ed. K. Sejrsen, T. Hvelplund and M. O. Nielsen). Wageningen Academic Publishers. Wageningen. pp. 87-135

Iyo, A. H. and C. W. Forsberg. 1994. Features of the cellodextrinase gene from Fibrobacter succinogenes S85. Can. J. Microbiol. 40:592-596. crossref(new window)

Jun, H. S., J. K. Ha, L. M. Malburg, Jr., A. M. Verrinder Gibbins and C. W. Forsberg. 2003. Characteristics of a cluster of xylanase genes in Fibrobacter succinogenes S85. Can. J. Microbiol. 49:171-180. crossref(new window)

Kam, D. K., H. S. Jun, J. Ha, G. D. Inglis and C. W. Forsberg. 2005. Characteristics of adjacent family 6 acetylxylan esterases from Fibrobacter succinogenes and the interaction with the XynE xylanase in hydrolysis of acetylated xylan. Can. J. Microbiol. 51:821-832. crossref(new window)

Koike, S., J. Pan, T. Suzuki, T. Takano, C. Oshima, Y. Kobayashi and K. Tanaka. 2004. Ruminal distribution of the cellulolytic bacterium Fibrobacter succinogenes in relation to its phylogenetic grouping. Anim. Sci. J. 75:417-422. crossref(new window)

Koike, S., J. Pan, Y. Kobayashi and K. Tanaka. 2003. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J. Dairy Sci. 86:1429-1435. crossref(new window)

Krause, D. O., S. E. Denman, R. I. Mackie, M. Morrison, A. L. Rae, G. T. Attwood and C. S. McSweeney. 2003. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol. Rev. 27:663-693. crossref(new window)

Lynd, L. R., P. J. Weimer, W. H. van Zyl and I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577. crossref(new window)

Maglione, G., J. B. Russell and D. B. Wilson. 1997. Kinetics of cellulose digestion by Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 63:665-669.

Malburg, S. R. C., L. M. Malburg, T. Liu, A. H. Iyo and C. W. Forsberg. 1997. Catalytic properties of the cellulose-binding endoglucanase F from Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 63:2449-2453.

Matte, A., C. W. Forsberg and A. M. Verrinder Gibbins. 1992a. Enzymes associated with metabolism of xylose and other pentoses by Prevotella (Bacteroides) ruminicola strains, Selenomonas ruminantium D, and Fibrobacter succinogenes S85. Can. J. Microbiol. 38:370-376, 1992. crossref(new window)

Matte, A. and C. W. Forsberg. 1992b. Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 58:157-168.

Matulova, M., R. Nouaille, P. Capek, M. Pean, E. Forano and A. M. Delort. 2005. Degradation of wheat straw by Fibrobacter succinogenes S85: a liquid- and solid-state nuclear magnetic resonance study. Appl. Environ. Microbiol. 71:1247-1253. crossref(new window)

McDermid, K. P., C. W. Forsberg and C. R. MacKenzie. 1990a. Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 56:3805-3810.

McDermid, K. P., C. R. MacKenzie and C. W. Forsberg. 1990b. Esterase activities of Fibrobacter succinogenes subsp. succinogenes S85. Appl. Environ. Microbiol. 56:127-132.

Michalet-Doreau, B., I. Fernandez, C. Peyron, L. Millet and G. Fonty. 2001. Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents. Reprod. Nutr. Dev. 41:187-194. crossref(new window)

Miron, J. and C. W. Forsberg. 1998. Features of Fibrobacter intestinalis DR7 mutant which is impaired with its ability to adhere to cellulose. Anaerobe 74:35-43.

Miron, J. and C. W. Forsberg. 1999. Characterisation of cellulosebinding proteins which are involved in adhesion mechanism of Fibrobacter intestinalis DR7. Appl. Microbiol. Biotechnol. 51:491-497. crossref(new window)

Morrison, M., K. E. Nelson, I. Cann, C. W. Forsberg, R. I. Mackie, J. B. Russell, B. A. White, D. B. Wilson, K. Amya, B. Cheng, S. Qi, H.-S. Jun, S. Mulligan, K. Tran, H. Carty, H. Khouri, W. Nelson, S. Daugherty and C. Fraser. 2003. The Fibrobacter succinogenes strain S85 sequencing project. 3rd ASM-TIGR, Microbial Genome Meeting,New Orleans.

Ozutsumi, Y., K. Tajima, A. Takenaka and H. Itabashi. 2006. Realtime PCR detection of the effects of protozoa on rumen bacteria in cattle. Curr. Microbiol. 52:158-162. crossref(new window)

Qi, M., K. E. Nelson, S. C. Daugherty, W. C. Nelson, I. R. Hance, M. Morrison and C. W. Forsberg. 2005. Novel molecular features of the fibrolytic intestinal bacterium Fibrobacter intestinalis not shared with Fibrobacter succinogenes as determined by suppressive subtractive hybridization. J. Bacteriol. 187:3739-3751. crossref(new window)

Reznikoff, W. S., I. Y. Goryshin and J. J. Jendrisak. 2004. Tn5 as a molecular genetics tool: In vitro transposition and the coupling of in vitro technologies with in vivo transposition. In: Mobile genetic elements: Protocols and genomic applications. (Anonymous). Humana Press. Totowa, NJ. pp. 83-96.

Satter, L. D., H. G. Jung, A. M. van Vuuren and F. M. Engels. 1999. Challenges in the nutrition of high-producing ruminants. In: Nutritional ecology of herbivores. (Ed. H. J. G. Jung and G. C. Fahey, Jr.). Proceedings of the Vth international symposium on the nutrition of herbivores. pp. 609-649.

Schwede, T., J. Kopp, N. Guex and M. C. Peitsch. 2003. SWISS MODEL: an automated protein homology-modeling server. Nucl. Acids Res. 31:3381-3385. crossref(new window)

Schubot, F. D., I. A. Kataeva, J. Chang, A. K. Shah, L. G. Ljungdahl, J. P. Rose, and B. C. Wang. 2004. Structural basis for the exocellulase activity of the cellobiohydrolase CbhA from Clostridium thermocellum. Biochemistry 43:1163-1170. crossref(new window)

Smith, D. C. and C. W. Forsberg. 1991. $\alpha$-Glucuronidase and other hemicellulase activities of Fibrobacter succinogenes S85 grown on crystalline cellulose or ball-milled barley straw. Appl. Environ. Microbiol. 57:3552-3557.

Tsai, L. C., L. F. Shyur, Y. S. Cheng and S. L. Lee. 2005. Crystal structure of truncated Fibrobacter succinogenes 1,3-1,4-$\beta$-Dglucanase in complex with $\alpha$-1,3-1,4-cellotriose. J. Mol. Biol. 354:642-651. crossref(new window)

Wells, J. E., J. B. Russell, Y. Shi and P. J. Weimer. 1995. Cellodextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of nonadherent bacteria. Appl. Environ. Microbiol. 61:1757-1762.

Wood, T. M. and S. I. McCrae. 1986. The effect of acetyl groups on the hydrolysis of ryegrass cell walls by xylanase and cellulase from Trichoderma koningii. Phytochemistry 25:1053-1055. crossref(new window)