JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of Dietary Lysine and Microbial Phytase on Growth Performance and Nutrient Utilisation of Broiler Chickens
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Dietary Lysine and Microbial Phytase on Growth Performance and Nutrient Utilisation of Broiler Chickens
Selle, P.H.; Ravindran, V.; Ravindran, G.; Bryden, W.L.;
  PDF(new window)
 Abstract
The effects of offering broilers phosphorus-adequate diets containing 10.0 and 11.8 g/kg lysine, without and with 500 FTU/kg exogenous phytase, on growth performance and nutrient utilisation were determined. Each of the four experimental diets was offered to 6 replicates of 10 birds from 7 to 28 days of age. Effects of treatment on performance, apparent metabolisable energy, apparent ileal digestibility of amino acids and bone mineralisation were examined. Both additional lysine and phytase supplementation improved (p<0.05) weight gain and feed efficiency, with interactions (p<0.05), as phytase responses were more pronounced in lysine-deficient diets. Phytase improved (p<0.05) apparent metabolisable energy, which was independent of the dietary lysine status. Bone mineralisation, as determined by percentage toe ash, was not affected by treatment, which confirms the phosphorus-adequate status of the diets. Phytase increased (p<0.05) the apparent ileal digestibility of the sixteen amino acids assessed. Unexpectedly, however, the dietary addition of 1.8 g/kg lysine, as lysine monohydrochloride, increased (p<0.05) the ileal digestibility of lysine per se and also that of isoleucine, methionine, phenylalanine, valine, aspartic acid, glutamic acid and tyrosine. In addition, there were significant interactions (p<0.05) between additional lysine and phytase supplementation for arginine, lysine, phenylalanine, aspartic acid, glutamic acid, glycine and serine digestibilities, with the effects of phytase being more pronounced in lysine-deficient diets. The possible mechanisms underlying the increases in amino acid digestibility in response to additional lysine and the interactions between lysine and microbial phytase in this regard are discussed. Also, consideration is given to the way in which phytate and phytase may influence ileal digestibility of amino acids.
 Keywords
Amino Acid Digestibility;Broiler Chickens;Lysine;Phytase;
 Language
English
 Cited by
1.
Effects of Different Levels of Supplementary Alpha-amylase on Digestive Enzyme Activities and Pancreatic Amylase mRNA Expression of Young Broilers,;;;;;

Asian-Australasian Journal of Animal Sciences, 2008. vol.21. 1, pp.97-102 crossref(new window)
2.
Effects of $1{\alpha}$-Hydroxycholecalciferol and Phytase on Growth Performance, Tibia Parameter and Meat Quality of 1- to 21-d-old Broilers,;;;;;;;

Asian-Australasian Journal of Animal Sciences, 2009. vol.22. 6, pp.857-864 crossref(new window)
3.
Mineral Retention in Young Broiler Chicks Fed Diets Based on Wheat, Sorghum or Maize,;;

Asian-Australasian Journal of Animal Sciences, 2010. vol.23. 1, pp.68-73 crossref(new window)
4.
Effects of Adding Super Dose Phytase to the Phosphorus-deficient Diets of Young Pigs on Growth Performance, Bone Quality, Minerals and Amino Acids Digestibilities,;;;;;;;

Asian-Australasian Journal of Animal Sciences, 2014. vol.27. 2, pp.237-246 crossref(new window)
 References
1.
Cowieson, A. J., T. Acamovic and M. R. Bedford. 2004. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. Br. Poult. Sci. 45:101-108. crossref(new window)

2.
Croom, W. J., J. Brake, B. A. Coles, G. B. Havenstein, V. L. Christensen, B. W. McBride, E. D. Peebles and I. L. Taylor. 1999. Is intestinal absorption capacity rate-limiting for performance in poultry? J. Appl. Poult. Res. 8:242-252.

3.
Demjen, A. P. and L. U. Thompson. 1991. Calcium and phytic acid independently lower the glycemic response to a glucose load. Proceedings, 34th Canadian Federation of Biological Sciences, p53 (Abstr).

4.
Eggum, B. O. and I. Jacobsen. 1976. Amino acid digestibility of protein concentrates given separately or together with cereal grains. J. Sci. Food Agric. 27:1190-1196. crossref(new window)

5.
Engelen, A. J., F. C. van der Heeft, P. H. G. Randsdorp and E. L. C. Smit. 1994. Simple and rapid determination of phytase activity. J. AOAC Int. 77:760-764.

6.
Gagne, F., J. J. Matte, G. Barnett and C. Pomar. 2002. The effect of microbial phytase and feed restriction on protein, fat and ash deposition in growing-finishing pigs. Can. J. Anim. Sci. 82:551-558. crossref(new window)

7.
Gal-Garber, O., S. J. Mabjeesh, D. Sklan and Z. Uni. 2003. Nutrient transport in the small intestine: $Na^+$,$K^+$-ATPase expression and activity in the small intestine of the chicken as influenced by dietary sodium. Poult. Sci. 82:1127-1133.

8.
Ganapathy, V. and F. H. Leibach. 1985. Is intestinal peptide transport energized by a proton gradient? Amer. J. Physiol. (Gastro. Liver Physiol. 12) 249:G153-G160.

9.
Ganapathy, V., M. Brandsch and F. H. Leibach. 1994. Intestinal transport of amino acids. In: Physiology of the Gastrointestinal Tract. Third edition, pp. 1773-1794 (Ed. L. R. Johnson) Raven Press, New York.

10.
Haydon, K. D. and J. W. West. 1990. Effect of dietary electrolyte balance on nutrient digestibility at the end of the small intestine and over the total digestive tract in growing pigs. J. Anim. Sci. 68:3687-3693.

11.
Humphrey, B. D., C. B. Stephensen, C. C. Calver and K. C. Klasing. 2006. Lysine deficiency and feed restriction independently alter cationic amino acid expression in chickens (Gallus gallus domesticus). Comp. Biochem. Physiol. Part A 143:218-227. crossref(new window)

12.
Iji, P. A., A. Saki and D. R. Tivey. 2001. Body and intestinal growth of broiler chicks on a commercial starter diet. 3. Development and characteristics of tryptophan transport. Br. Poult. Sci. 42:523-529. crossref(new window)

13.
Jaso, M. J., M. Vial and M. Moreto. 1995. Hexose accumulation by enterocytes from the jejunum and rectum of chickens adapted to high and low NaCl intakes. Pflugers Archiv 429:511-516. crossref(new window)

14.
Johnson, R. J. and H. Karunajeewa. 1985. The effects of dietary minerals and electrolytes on the growth and physiology of the young chick. J. Nutr. 115:1680-1690.

15.
Johnston, S. L., S. B. Williams, L. L. Southern, T. D. Bidner, L. D. Bunting, J. O. Matthews and B. M Olcott. 2004. Effect of phytase addition and dietary calcium and phosphorus levels on plasma metabolites and ileal and total tract nutrient digestibility in pigs. J. Anim. Sci. 82:705-714.

16.
Kies, A. K., W. J. J. Gerrits, J. W. Schrama, M. J. W. Heetkamp, K. L. van der Linden, T. Zandstra and M. W. A. Verstegen. 2005. Mineral absorption and excretion as affected by microbial phytase, and their effect on energy metabolism in young piglets. J. Nutr. 135:1131-1138.

17.
Munck, B. G. 1989. Amino acid transport across the hen colon: interactions between leucine and lysine. Amer. J. Physiol. (Gastro. Liver Physiol. 19) 256:G532-G539.

18.
Nyachoti, C. M., C. F. M. de Lange, B. W. McBride and H. Schulze. 1997. Significance of endogenous gut nitrogen losses in the nutrition of growing pigs: a review. Can. J. Anim. Sci. 77:149-163. crossref(new window)

19.
Paik, I. K. 2003. Application of phytase, microbial or plant origin, to reduce phosphorus excretion in poultry production. Asian-Aust. J. Anim. Sci. 16:124-135.

20.
Potter, L. M. 1988. Bioavailability of phosphorus from various phosphates based on body weight and toe ash measurements. Poult. Sci. 67:96-102.

21.
Ravindran, V., P. C. H. Morel, G. G. Partridge, M. Hruby and J. S. Sands. 2006. Influence of an E. coli-derived phytase on nutrient utilization in broiler starters fed diets containing graded levels of phytate. Poult. Sci. 85:82-89.

22.
Rickard, S. E. and L. U. Thompson. 1997. Interactions and biological effects of phytic acid. In: Antinutrients and Phytochemicals in Food (Ed. F. Shahidi) pp. 294-312. American Chemical Society, Washington DC.

23.
Selle, P. H., V. Ravindran, R. A. Caldwell and W. L. Bryden. 2000. Phytate and phytase: consequences for protein utilisation. Nutr. Res. Rev. 13:255-278. crossref(new window)

24.
Selle, P. H., V. Ravindran, G. Ravindran, P. H. Pittolo and W. L. Bryden. 2003a. Influence of phytase and xylanase supplementation on growth performance and nutrient utilisation of broilers offered wheat based diets. Asian-Aust. J. Anim. Sci. 16:394-402.

25.
Selle, P. H., V. Ravindran, P. H. Pittolo and W. L. Bryden. 2003b. Effects of phytase supplementation of diets with two tiers of nutrient specifications on growth performance and protein efficiency ratios of broiler chickens. Asian-Aust. J. Anim. Sci. 16:1158-1164

26.
Selle, P. H., V. Ravindran, W. L. Bryden and T. Scott. 2006. Influence of dietary phytate and exogenous phytase on amino acid digestibility in poultry: a review. J. Poult. Sci. 43:89-103. crossref(new window)

27.
Selle, P. H. and V. Ravindran. 2007. Review. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 135:1-41. crossref(new window)

28.
Simons, P. C. M., H. A. J. Versteegh, A. W. Jongbloed, P. A Kemme, P. Slump, K. D. Bos, M. G. E. Wolters, R. F. Beudeker and G. J. Verschoor. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr. 64:525-540 crossref(new window)

29.
Singh, P. K., V. K. Khatta, R. S. Thakur, S. Dey and M. L. Sangwan. 2003. Effect of phytase supplementation on the performance of broiler chickens fed maize and wheat based diets with different levels of non-phytate phosphorus. Asian-Aust. J. Anim. Sci. 16:1642-1649.

30.
Sklan, D. and Y. Noy. 2000. Hydrolysis and absorption in the small intestine of posthatch chicks. Poult. Sci. 79:1306-1310.

31.
Tao, R., R. J. Belzile and G. J. Brisson. 1971. Amino acid digestibility of rapeseed meal fed to chickens: effects of fat and lysine supplementation. Can. J. Anim. Sci. 51:705-709. crossref(new window)

32.
Thompson, L. U., C. L. Button and D. J. A. Jenkins. 1987. Phytic acid and calcium affect the in vitro rate of navy bean starch digestion and blood glucose responses in humans. Am. J. Clin. Nutr. 46:467-473.

33.
Torras-Llort, M., D. Torrent, J. F. Soriano-Garcia, R. Ferrer and M. Moreto. 1998. Effect of a lysine-enriched diet on L-lysine transport by the brush-border membrane of the chicken jejunum. Amer. J. Physiol. (Regul. Integr. Comp. Physiol. 43) 274:R69-R75.

34.
Torras-Llort, M., D. Torrent, J. F. Soriano-Garcia, J. L. Gelpi, R. Estevez, R. Ferrer, M. Palacin and M. Moreto. 2001. Sequential amino acid exchange across $b^{0,+}$-like system in chicken brush border jejunum. J. Memb. Biol. 180:213-220. crossref(new window)

35.
Um, J. S., H. S. Lim, S. H. Ahn and I. K. Paik. 2000. Effects of microbial phytase supplementation to low phosphorus diets on the performance and utilization of nutrients in broiler chickens. Asian-Aust. J. Anim. Sci. 13:824-829.

36.
Welsch, C. A., P. A. Lachance and B. P. Wasserman. 1989. Dietary phenolic compounds: Inhibition of $Na^+$-dependent glucose uptake in rat intestinal brush border membrane vesicles. J. Nutr. 119:1698-1704.

37.
Wise, A. 1983. Dietary factors determining the biological activity of phytates. Nutr. Abstr. Rev. Clin. Nutr. 53:791-806.