Advanced SearchSearch Tips
Immunity of the Buffalo Mammary Gland during Different Physiological Stages
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Immunity of the Buffalo Mammary Gland during Different Physiological Stages
Dang, A.K.; Kapila, Suman; Tomar, Parveen; Singh, Charan;
  PDF(new window)
To study the immunity of the buffalo mammary gland during involution and around parturition and compare it with the mastitic mammary gland, milk samples were collected from 9 Murrah buffaloes during the above critical periods. SCC of buffalo milk increased significantly (p<0.01) by day 21 of involution and one week prepartum. SCC was significantly higher around parturition but became normal at 14 days postpartum. Phagocytic activity (PA) and phagocytic index (PI) of the buffalo milk neutrophils decreased as the duration of the dry period increased. Elevated levels of immunoglobulins at calving improved the PA and PI, but the lowest PA of 18.8% and PI of 1.75 were recorded at 7 days postpartum. Buffaloes suffering from clinical mastitis had PA of 12.3% and PI of 1.46 that increased significantly (p<0.01) on the third day of treatment. Distance of teat from ground level was found to be minimum at one week before parturition. The investigation showed that in vitro phagocytic activity of buffalo neutrophils was weakest at one week postpartum.
Buffalo;Milk;SCC;Phagocytic Activity;Index;Immunoglobulins;Teat Distance;
 Cited by
Effect of Pregnancy on Lactation Milk Value in Dairy Buffaloes,;;;;;;

아세아태평양축산학회지, 2008. vol.21. 4, pp.523-531 crossref(new window)
Changes in colostrum of Murrah buffaloes after calving, Tropical Animal Health and Production, 2009, 41, 7, 1213  crossref(new windwow)
In vitro phagocytic activity of milk neutrophils during lactation cycle in Murrah buffaloes of different parity, Journal of Animal Physiology and Animal Nutrition, 2010, 94, 6, 706  crossref(new windwow)
) mammary epithelial cells isolated from milk, PROTEOMICS, 2013, 13, 21, 3189  crossref(new windwow)
Diurnal rhythm in the counts and types of milk somatic cells, neutrophil phagocytosis and plasma cortisol levels in Karan Fries cows during different seasons and parity, Biological Rhythm Research, 2017, 1744-4179, 1  crossref(new windwow)
Diurnal variation of milk somatic and differential leukocyte counts of Murrah buffaloes as influenced by different milk fractions, seasons and parities, Biological Rhythm Research, 2018, 49, 1, 151  crossref(new windwow)
Amarante-Paffaro, A., G. S. Queiroz, S. T. Correa, B. Spira and E. Bevilacqua. 2004. Phagocytosis as a potential mechanism for microbial defense of mouse placental trophoblast cells. Reprod. 128:207-218. crossref(new window)

Barkema, H. W., H. A. Deluyker, Y. H. Schukken and T. J. G. M. Lam. 1999. Quarter-milk somatic cell count at calving and at the first six milkings after calving, Prev. Vet. Med. 38:1-9. crossref(new window)

Burton, J. L., M. E. Kehrli, Jr., S. Kapil and R. L. Horst. 1995. Regulation of L-selectin and CD18 on bovine neutrophils by glucocorticoids: effects of cortisol and dexamethasone. J. Leuk. Bio. 57:317. crossref(new window)

Burvenich, C., V. Vanmerris, J. Mehrzad, A. Diezfraile and L. Duchateau. 2003. Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res. 34:521-564. crossref(new window)

Coulon, J. B., Pradel, P.; Cochard, T. and Poutrel. 1988. Effect of extreme walking conditions for Dairy cows on milk yield, chemical composition and somatic cell count. J. Dairy Sci. 81:994. crossref(new window)

DeChatelet, L. R., G. D. Long, P. S. Shirley, D. A. Bass, M. J. Thomas, F. W. Henderson and M. S. Cohen. 1982. Mechanism of the luminol dependent chemiluminiscence of human neutrophils. J. Immun. 129:1589-1593.

Dosogne, H., F. Vangroenweghe, J. Mehrzad, A. M. Massart-leen and C. Burvenich. 2003. Differential Leucocyte Count method for bovine low Somatic Cell Count milk. J. Dairy Sci. 86:828-834. crossref(new window)

Erskine, R. J. 2001. Enhancing immunity during the dry period:pitfalls and oppurtunities. Natl. Mast.Coun.Ann. Meet. Proc. pp. 95-106.

Gonzalo, C., J. R. Martínez, J. A. Carriedo and F. San Primitivo. 2003. Fossomatic Cell-Counting on Ewe Milk: Comparison with Direct Microscopy and Study of Variation Factors. J. Dairy Sci. 86:138-145. crossref(new window)

Guidry, A. J., M. J. Paape and R. E. Pearson. 1976. Effects of parturition and lactation on blood and milk cell concentrations, corticosteroids, and neutrophil phagocytosis in the cow. Am. J. Vet. Res. 37(10):1195-1200.

Haenlein, G. F. W., L. H. Schultz and J. P. Zikakis 1973. Composition of proteins in milk with varying leucocytes counts. J. Dairy Sci. 56:1017-1024. crossref(new window)

Hay, F. C. and O. M. R. Westwood. 2002. Practical Immunology, 4th edition, pp. 203-206.

Hill, A. W., A. L. Shears and K. G. Hibbitt. 1979. The pathogenesis of experimental Escherichia coli mastitis in newly calved dairy cows. Res. Vet. Sci. 26:97.

Hoeben, D., E. Monfardini, G. Opsama, H. Dosogne, A. DeKuif, J. F. Beckers and C. Burvenich. 2000. Chemiluminiscence of bovine polymorphonuclear leukocytes during the periparturient period and relation with metabolic parameters and bovine pregnancy associated glycoproteins. J. Dairy Res. 67:249-259. crossref(new window)

Hogberg, S. M. and O. Lind. 2003. Buffalo Milk Production- Chapter 6: Milking the buffalo, www.milkproduction. com.

Jain, N. C. 1993. In: Essentials of Veterinary Hematology, Lea and Febiger, Philadelphia, PA. 417.

Jain, N. C. and J. Lasmanis. 1978. Phagocytosis of serum-resistant and serum-sensitive coliform bacteria (Klebsiella) by bovine neutrophils from blood and mastitic milk. Am. J. Vet. Res. 39:425-427.

Jensen, D. L. and R. J. Eberhart. 1981. Total and differential cell counts in secretions of the nonlactating bovine mammary gland. Am. J. Vet. Res. 42:743-747.

Lohuis, J. A., W. Van Leeuwen, J. H. M. Verheijden, A. Brand. 1988. Effect of dexamethasone on experimental Escherichia coli mastitis in the cow. J. Dairy Sci. 71:2782. crossref(new window)

Lund, T., F. Miglior, J. C. M. Dekkers and E. B. Burnside. 1994. Genetic relationship between clinical mastitis, somatic cell counts and udder confirmation in Danish Holstein. Livest. Prod. Sci. 39:243-251. crossref(new window)

MacDonald, E. A., L. Xia, H. Monardes and J. D. Turner. 1994. Neutrophil function in vitro: Diapedesis and phagocytosis. J. Dairy Sci. 77:628-638. crossref(new window)

McEwan, A. D., E. W. Fisher, I. E. Selman and W. J. Penhale. 1970. A turbidity test for the estimation of immunoglobulin levels in neonatal calf serum. Clinica Chimica Acta 27:155-163. crossref(new window)

Meglia, G. E., A. Johannisson, S. Agenas, K. Holtenius and K. P. Waller. 2001. Effects of feeding intensity during the dry period on leukocyte and lymphocyte sub-populations, neutrophil function and health in periparturient dairy cows. Vet J. 2005. 169(3):376-84. crossref(new window)

Mehrzad, J., H. Dosogne, E. Meyer and C. Burvenich. 2001. Local and systemic effects of endotoxin mastitis on the chemiluminescence of milk and blood neutrophils in dairy cows. Vet. Res. 32:131-144. crossref(new window)

Monrades, H. G., R. I. Cue and J. F. Hayes. 1990. Correlations between udder confirmation traits and somatic cell counts in Canadian Holstein cows. J. Dairy Sci. 73:1337-1342. crossref(new window)

Moroni, P., C. S. Rossi, G. Pisoni, V. Bronzo, B. Castiglioni and P. J. Boettcher. 2006. Relationships Between Somatic Cell Count and Intramammary Infection in Buffaloes. J. Dairy Sci. 89(3): 998-1003. crossref(new window)

Paape, M. J., D. D. Bannerman, X. Zhao and J. W. Lee. 2003. The bovine neutrophil: Structure and function in blood and milk. Vet. Res. 34:597-627. crossref(new window)

Pyorala, S. 2003. Indicators of inflammation in the diagnosis of mastitis. Vet. Res. 34:565-578. crossref(new window)

Rainard, P. and C. Riollet. 2003. Mobilization of neutrophils and defense of bovine mammary gland. Reprod. Nutr. Dev. 43:439-457. crossref(new window)

Rivas, A. L., R. Tadevosyan, F. W. Quimby, T. Coksaygan and D. H. Lein. 2002. Identification of subpopulations of bovine mammary-gland phagocytes and evaluation of sensitivity and specificity of morphologic and functional indicators of bovine mastitis. Canadian J. Vet. Res. 66(3):165-172.

Schuit, K. E. 1979. Phagocytosis and Intracellular Killing of Pathogenic Yeasts by Human Monocytes and Neutrophils. Infect. Immun. 24(3):932-938.

Schultz, L. H. 1977. Somatic cell counting of milk in production testing programs as a mastitis control technique. J. Am. Vet. Med. Ass. 170:1244-1246.

Smith, K. L. and J. S. Hogan. 2001. The physiology of mammary glands during the dry period and the relationship to infection.

Sugisawa, H., T. Itou and T. Sakai. 2001. Promoting effect of colostrum on the phagocytic activity of bovine Poly morpho nuclear leucocytes in vitro. Biology of the neonate. 79(20): 140-144. crossref(new window)

Tripaldi, C., S. Terramoccia, S. Bartocci, M. Angelucci and V. Danese. 2003. The effects of the somatic cell count on yield, composition and coagulating properties of Mediterranean buffalo milk. Asian Aust. J. Anim. Sci. 16:738-742. crossref(new window)

Uppal, S. K., K. B. Singh, K. S. Roy, D. S. Nuriyal and B. K. Bansal. 1994. Natural defence mechanism against mastitis: A comparative histomorphology of buffalo teat canal. Buffalo J. 2:125-131.

Woessner, J. J. F. 1992. Cellular proteinases in inflammation. In: Biochemistry of inflammation (Ed. J. T. Whicher and S. W. Evans). Kluwer Academic Publishers, London, pp. 57-89.