Advanced SearchSearch Tips
Characterization of Fatty Acid Digestion of Beijing Fatty and Arbor Acres Chickens
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characterization of Fatty Acid Digestion of Beijing Fatty and Arbor Acres Chickens
Yuan, J.M.; Guo, Y.M.; Yang, Y.; Wang, Z.H.;
  PDF(new window)
The aim of this experiment was to compare the characterization of fatty acid digestion of Beijing Fatty (BF) and Arbor Acres (AA) chickens. One-day-old male AA and BF chickens were raised in the same house, and fed with the same diet. We first evaluated utilization of dietary fatty acids in chickens by the total collection procedure, and chickens were then killed to compare the abundance of intestinal mRNA expression of liver-fatty acid binding protein (L-FABP) and intestinal-fatty acid binding protein (I-FABP) by Real-time PCR, and also the pH of intestinal mucosa at 3 and 6 weeks of age. Another group of chickens were sampled at 6 weeks of age to compare the total bile acid concentration in serum, and lipase activity in contents of the small intestine. Results showed that compared to AA chickens, BF chickens had higher lipase activity in the content of the small intestine (p<0.05), greater total bile acid content in portal vein blood (p<0.05) at 6 weeks of age, lower intestinal mucosal pH at both 3 weeks (p<0.05) and 6 weeks (p<0.05) of age, and higher abundance of liver-fatty acid binding protein (L-FABP) mRNA expression in intestine tissues at 6 weeks of age (p<0.05), and higher digestibility of fatty acids at both 3 and 6 weeks (p<0.05) of age. There was no difference in I-FABP mRNA expression between AA and BF chickens at either age. Thus, BF chickens had greater fatty acids utilization than AA chickens that was associated with L-FABP, lipase activity, bile acid content and intestinal mucosal pH.
Fatty Acids Digestion;Lipase Activity;Intestinal Mucosal pH;Intestinal FABP Expression;Chicken;
 Cited by
Gene Expression of Heart and Adipocyte Fatty Acid-binding Protein in Chickens by FQ-RT-PCR,;;;;;;

아세아태평양축산학회지, 2010. vol.23. 8, pp.987-992 crossref(new window)
Alleviation by gamma amino butyric acid supplementation of chronic heat stress-induced degenerative changes in jejunum in commercial broiler chickens, Stress, 2017, 20, 6, 562  crossref(new windwow)
Armand, M., P. Borel, B. Pasquier, C. Senft, M. Dubois, M. Andre, J. Peyrot, J. Salducci and Lairon. 1996. Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am. J. Physiol. 271:G172-183. crossref(new window)

Bass, N. M., J. A. Manning, R. K. Ockner, J. L.Gordon, S. Seetharam and D. H. Alpers. 1985. Regulation of the biosynthesis of two distinct fatty acid-binding proteins in rat liver and intestine: Influences of sex difference and of clofibrate. J. Biolog. Chem. 260:1432-1436.

Bauer, E., S. Jakob and R. Mosenthin. 2005. Principles of physiology of lipid digestion. Asian-Aust. J. Anim. Sci. 18:282-295. crossref(new window)

Besnard, P., I. Niot, P. Poirier, C. Lionel and A. Bernard. 2002. New insights into the fatty acid-binding protein (FABP) family in the small intestine. Mol. Cell. Biochem. 239:139-147. crossref(new window)

Chen, G. H., X. S. Wu, S. S. Hou, K. H. Wang and K. W. Chen. 1999. Study on the fatty acids contents in muscle of Chinese native chicken breeds. Chinese J. Anim. Sci. 35:27-28.

Chen, G. H., S. S. Hou, X. S. Wu, K. H. Wang, K. W. Chen and J. H. Li. 2000. Comparison between inosinic acid content of muscle in Chinese native chickens. Acta Vet. Zoot. Sinica, 31:211-215.

Chow, S. L. and D. Hollander. 1979. Linoleic acid absorption in the unanesthetized rat: mechanism of transport and influence of luminal factors on absorption rate. Lipids, 14:378-385. crossref(new window)

Dunnington, E. A. and P. B. Siegel. 1995. Enzyme actively and organ development in newly hatched chicks selected for high or low eight-week body weight. Poult. Sci. 74:761-770. crossref(new window)

Ganderemer, G. 2002. Lipids in muscles and adipose tissues, change during processing and sensory properties of meat products. Meat Sci. 62:309-321. crossref(new window)

Hurwitz, S., A. Bar, M. Katz, D. Sklan and P. Budowski. 1973. Absorption and secretion of fatty acids and bile in the intestine of the laying fowl. J. Nutr. 103:543-547. crossref(new window)

Katongole, J. B. and B. E. March. 1979. Fatty acid-binding protein in the intestine of the chicken. Poult. Sci. 58:372-375. crossref(new window)

Katongole, J. B. and B. E. March. 1980. Fat utilization in relation to intestinal fatty acid binging protein and bile salts in chicks of different ages and different genetic sources. Poult. Sci. 59:819-827. crossref(new window)

Krogdahl, A. 1985. Digestion and absorption of lipids in poultry. J. Nutr. 115:675-685. crossref(new window)

Krogdahl, A. and J. Sell. 1989. Influence of age on lipase amylase and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poult. Sci. 68:1561-1568. crossref(new window)

Mossab, A., J. M. Hallouis and M. Lessire. 2000. Utilization of soybean oil and tallow in young turkeys compared with young chickens. Poult. Sci. 79:1326-1331. crossref(new window)

Nir, I., Z. Nitsan and M. Mahagna. 1993. Comparative growth and development of the digestive organs and of some enzymes in broiler and egg type chicks after hatching. Br. Poult. Sci. 34:523-532. crossref(new window)

Nitsan, Z., E. A. Dunnington and P. B. Siegel. 1991. Organ growth and digestive enzyme levels to fifteen days of age in strains of chickens differing in body weight. Poult. Sci. 70:2040-2048. crossref(new window)

Noy, Y. and D. Sklan. 1995. Digestion and absorption in the young chick. Poult. Sci. 74:366-373. crossref(new window)

O'Sullivan, N. P., E. A. Dunnington and P. B. Siegel. 1992. Correlated responses in lines of chickens divergently selected for 56-day body weight. 3. Digestive enzymes. Poult. Sci. 71:610-617. crossref(new window)

Ockner, R. K., J. A. Manning, R. B. Poppenhausen and K. L. William. 1972. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Sci. 177:56-58. crossref(new window)

Palo, P. E., J. L. Sell, F. J. Piquer, L. Vilaseca and M. F. Soto- Salanova. 1995. Effect of early nutrient restriction on brioler chickens. 2. Performance and digestive enzyme activities. Poult. Sci. 74:1470-1483. crossref(new window)

Pinchasov, Y., I. Nir and Z. Nitsan. 1990. Metabolic and anatomical adaptations of heavy-bodied chicks to intermittent feeding. 2. Pancreastic digestive enzymes. Br. Poult. Sci. 31:769-777. crossref(new window)

Poirier, H., I. Niot, P. Degrace, M. C. Monnot, A. Bernard and P. Besnard. 1997. Fatty acid regulation of fatty acid-binding proteins expression in the small intestine. Am. J. Physiol. 273:G289-295. crossref(new window)

Polin, D., T. L.Wing, P. Ki and K. E. Pell. 1980. The effect of bile acids and lipase on absorption of tallow in young chicks. Poult. Sci. 59:2738-2743. crossref(new window)

Richieri, G. V., R. T. Ogata and A. M. Kleinfeld. 1999. Fatty acid interactions with native and mutant fatty acid binding protein. Mol. Cell Biochem. 192:77-85. crossref(new window)

Shiau, Y. F. 1981. Mechanism of fat absorption. Am. J. Physiol. 240G:1-9.

Shiau, Y. F. 1990. Mechanism of intestinal fatty acid uptake in the rat: the role of an acidic microlimate. J. Physiol. 421:463-474. crossref(new window)

Shih, B. L., B. Yu and J. C. Hsu. 2005. The development of gastrointestinal tract and pancreatic enzymes in white Roman geese. Asian-Aust J. Anim. Sci. 18:841-847. crossref(new window)

Sukhija, P. S. and D. L. Almquist. 1988. Rapid method for determination of total fatty acid content and composition of the feedstuffs and feces. J. Agric. Food Chem. 36:1202-1206. crossref(new window)

Tso, P., M. Lindstorm and B. Borgstrom. 1987. Factors regulating the formation of chylomicrons and very-low density lipoproteins by the rat small intestine. Biochem. Biophys. Acta. 922:304-313. crossref(new window)

Vassileva, G., L. Huwyler, K. Poirier, L. B. Agellon and M. J. Toth. 2000. The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. Faseb. J. 14:2040-2046. crossref(new window)

Woudstra, T. D., L. A. Drozdowski, G. E. Wild, M. T. Clandinin, L. B. Agellon and B. R. Thomson. 2004. The age-related decline in intestinal lipid uptake is associated with a reduced abundance of fatty acid-binding protein. Lipids. 39:603-610. crossref(new window)

Yuan, J. M., Y. M. Guo, ZH. Wang, Y. Yang and W. Nie. 2006. Comparative study of development of digestive organ and essential fatty acids content in breast muscle between Beijing Fatty chicks and AA broiler chicks (abstract), XII AAAP congress proceeding-abstract, Busan, Korea.