Advanced SearchSearch Tips
Differences in Microbial Activities of Faeces from Weaned and Unweaned Pigs in Relation to In vitro Fermentation of Different Sources of Inulin-type Oligofructose and Pig Feed Ingredients
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Differences in Microbial Activities of Faeces from Weaned and Unweaned Pigs in Relation to In vitro Fermentation of Different Sources of Inulin-type Oligofructose and Pig Feed Ingredients
Shim, S.B.; Verdonk, J.M.A.J.; Pellikaan, W.F.; Verstegen, W.A.;
  PDF(new window)
An in vitro experiment was conducted to evaluate the differences in microbial activity of five faecal inocula from weaned pigs and one faecal inoculum from unweaned pigs in combination with 6 substrates. The substrates tested were negative control diet, corn, soybean meal, oligofructose (OF), ground chicory roots and a mixture (60% chicory pulp and 40% OF). The inocula used were derived from pigs fed either a corn-soy based diet without antibiotics (NCON), the NCON diet supplemented with oligofructose (OF), a mixture of chicory pulp (40%) and OF (60%) (MIX), ground chicory roots (CHR) or the NCON diet supplemented with antibiotics (PCON). The cumulative gas production measured fermentation kinetics and end products, such as total gas production, ammonia and volatile fatty acids, were also determined. Both the substrate and the inoculum significantly affected the fermentation characteristics. The cumulative gas production curve showed that different substrates caused more differences in traits of fermentation kinetics than the different inocula. Inocula of weaned pigs gave a significantly higher VFA production compared to the inoculum from unweaned animals, whilst the rate of fermentation and the total gas produced did not differ. OF showed the highest fermentation kinetics and the lowest , pH and OM loss compared to other substrates. It was concluded that the microbial activity was significantly affected by substrate and inoculum. Inoculum from weaned pigs had more potential for microbial fermentation of the carbohydrate ingredients and oligofructose than that of unweaned pigs. A combination of high and low polymer inulin may be more beneficial to the gut ecosystem than using high- or low-polymer inulin alone.
Oligofructose;Fermentation;Pig;Faeces;In vitro;
 Cited by
Effect of Nipple Angle on Water Disappearance by Pigs,;;;;;;;

아세아태평양축산학회지, 2008. vol.21. 1, pp.120-123 crossref(new window)
A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs,;;

아세아태평양축산학회지, 2008. vol.21. 4, pp.603-615 crossref(new window)
Awati, A., S. R. Konstantinov, B. A. Williams, A. D. L. Akkermans, M. W. Bosch, H. Smidt and M. W. A. Verstegen. 2005. Effect of substrate adaptation on the microbial fermentation and microbial composition of faecal microbiota of weaning piglets studied in vitro. J. Sci. Food Agric. 85:1765-1772 crossref(new window)

Bauer, E., B. A. Williams, M. W. Bosch, C. Voigt, R. Mosenthin and M. W. A. Verstegen. 2004. Differences in microbial activity of digesta from three sections of the porcine large intestine according to in vitro fermentation of carbohydraterich substances. J. Sci. Food Agric. 84, 15:2097-2104 crossref(new window)

Bauer, E., B. A. Williams, C. Voigt, R. Mosenthin and M. W. A. Verstegen. 2001. Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates. Anim. Sci. 73:313-322

Cummings, J. H. and G. T. Macfarlane. 1991. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70:443-459

Dong, G. Z. and J. R. Pluske. 2007. The low feed intake in newlyweaned pigs: problems and possible solutions. Asian-Aust. J. Anim. Sci. 20(3):440-452

Estrada, A., M. D. Drew and A. van Kessel. 2001. Effect of the dietary supplementation of fructooligosaccharides and Bifidobacterium longum to early-weaned pigs on performance and fecal bacterial populations. Can. J. Anim. Sci. 81:141-148 crossref(new window)

Gibson, G. R. and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125:1401-1412

Groot, J. C. J., J. W. Cone, B. A. Williams, F. M. A. Debersaques and E. A. Lantinga. 1996. Multi-phasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 64:77-89 crossref(new window)

He, G., S. K. Baidoo, Q. Yang, D. Golz and B. Tungland. 2002. Evaluation of chicory inulin extracts as feed additive for earlyweaned pigs. J. Anim. Sci. 80(Suppl. 1):81(Abstr.)

Houdijk, J. G. M. 1998a. Effects of non-digestible oligosaccharides in young pig diets. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands

Houdijk, J. G. M., S. Bosch, S. Tamminga, M. W. A. Verstegen, E. B. Berenpas and H. Knoop. 1999. Apparent ileal and total-tract nutrient digestion by pigs as affected by dietary non-digestible oligosaccharides. J. Anim. Sci. 77:148-158

Houdijk, J. G. M., S. Bosch, M. W. A. Verstegen and E. B. Berenpas. 1998b. Effects of dietary oligosaccharides on the growth performance and faecal characteristics of young growing pigs. Anim. Feed Sci. Technol. 71:35-48 crossref(new window)

Houdijk, J. G. M., R. Hartemink, R. Bosch and M. W. A. Verstegen. 2002a. Effects of dietary non-digestible oligosaccharides on microbial characteristics differ between ileal chyme and faeces in weaned pigs. Arch. Anim. Nutr. 56:297-307 crossref(new window)

Houdijk, J. G. M., M. W. A. Verstegen, M. W. Bosch and K. L. M. van Laere. 2002b. Dietary fructooligosaccharides and transgalactooligosaccharides can affect fermentation characteristics in gut contents and potential plasma of growing pigs. Livest. Prod. Sci. 73:175-184 crossref(new window)

Houdijk, J. G. M., B. A. Williams, S. Tamminga and M. W. A. Verstegen. 1997. Relation between in vivo and in vitro fermentation of oligosaccharides in weaner pigs. In: Proceedings of the British Society of Animal Science. 59(Abstr.)

ISO 5984. 1978. International Organization for Standardization, Animal Feeding stuffs-Determination of crude ash (ISO 5984)

ISO 6496. 1999. International Organization for Standardization, Animal feeding stuffs-Determination of moisture and other volatile matter content (ISO 6496)

Lowe, S. E., M. K. Thodorou, A. P. J. Trinci and R. B. Hespell. 1985. Growth of anaerobic rumen fungi on defined and semidefined media lacking rumen fluid. J. Gen. Microbiol. 131:2225-2229

Macfarlane, G. T., G. R. Gibson, E. Beatty and J. H. Cummings. 1992. Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. FEMS Microbiol. Ecol. 101:81-88 crossref(new window)

Mathew, A. G., W. G. Upchurch and S. E. Chattin. 1998. Incidence of antibiotic resistance in fecal Escherichia coli isolatd from commercial swine farms. J. Anim. Sci. 76:429-434

Metzler, B., E. Bauer and R. Mosenthin. 2005. Microflora management in the gastrointestinal tract of piglets. Asian-Aust. J. Anim. Sci. 18(9):1353-1362

National Research Council. 1998. Nutrient requirements of swine. 10th Ed. National Academy Press, Washington, DC

Pluske, J. R., D. W. Pethick, Z. Durmic, D. J. Hampson and B. P. Mulan. 1999. Non-starch polysaccharides in pig diets and their influence on intestinal microflora, digestive physiology and enteric disease. In: Recent Advances in Animal Nutrition (Ed. P. C. Garnsworthy and J. Wiseman). Nottingham University Press. pp. 189-226

Roberfroid, M. B., J. A. Van Loo and G. R. Gibson. 1998. The bifidogeneic nature of chicory inulin and its hydrolysis products. J. Nutr. 128:11-19

Roediger, W. E. W. 1980. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793- 798 crossref(new window)

SAS Institute Inc. 2003. SAS/STAT User's Guide: Version 6, Vol. 2, 4th Ed. SAS Institute Inc., Cary, Noth Carolina

Schlegel, H. G. 1992. General Microbiology. 7th Ed. University Press, Cambridge

Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan and J. A. France. 1994. Simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197 crossref(new window)

Tomomatsu, H. 1994. Health effects of oligosaccharides. Food Technol. 48:61-65

Van Loo, J. 2004. The specificity of the interaction with intestinal bacterial fermentation by prebiotics determines their physiological efficacy. Nutr. Res. Rev. 17:89-98 crossref(new window)

Williams, B. A., M. W. Bosch, A. Awati, S. R. Konstantinov, H. Smidt, A. D. L. Akkermans, M. W. A. Verstegen and S. Tamminga. 2005. In vitro assessment of gastrointestinal tract (GIT) fermentation in pigs: fermentable substrates and microbial activity. Anim. Res. 54:191-201 crossref(new window)

Williams, B. A., M. W. A. Verstegen and S. Tamminga. 2001. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev. 14:207-227 crossref(new window)

Williams, B. A., C. Voigt and M. W. A. Verstegen. 1998. The faecal microbial population can be representative of large intestinal microfloral activity. In: Proceedings of the British Society of Animal Science. 165 (Abstr.)

Xu, Z. R., X. T. Zou, C. H. Hu, M. S. Xia, X. A. Zhan and M. Q. Wang. 2002. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of growing pigs. Asian-Aust. J. Anim. Sci. 15(12):1784-1789