Advanced SearchSearch Tips
Screening of Indigenous Strains of Lactic Acid Bacteria for Development of a Probiotic for Poultry
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Screening of Indigenous Strains of Lactic Acid Bacteria for Development of a Probiotic for Poultry
Karimi Torshizi, M.A.; Rahimi, Sh.; Mojgani, N.; Esmaeilkhanian, S.; Grimes, J.L.;
  PDF(new window)
In an attempt to develop a probiotic formulation for poultry feed, a number of lactic acid bacteria (LAB) were isolated from chicken intestinal specimens and a series of in vitro experiments were performed to evaluate their efficacy as a potential probiotic candidate. A total of 650 LAB strains were isolated and screened for their antagonistic potential against each other. Among all the isolates only three isolates (TMU121, 094 and 457) demonstrated a wide spectrum of inhibition and were thus selected for detailed investigations. All three selected isolates were able to inhibit the growth of E. coli and Salmonella species, although to variable extent. The nature of the inhibitory substance produced by the isolates TMU121 and 094 appeared to be associated with bacteriocin, as their activity was completely lost after treatment with proteolytic enzymes, while pH neutralization and catalase enzyme had no effect on the residual activity. In contrast, isolate TMU457 was able to resist the effect of proteolytic enzymes while pH neutralization completely destroyed its activity. Attempts were made to study the acid, bile tolerance and cell surface hydrophobicity of these isolates. TMU121 showed high bile salt tolerance (0.3%) and high cell surface hydrophobicity compared to the other two strains studied, while TMU094 appeared the most pH resistant strain. Based on these results, the three selected LAB isolates were considered as potential ingredients for a chicken probiotic feed formulation and were identified to species level based on their carbohydrate fermentation pattern by using API 50CH test kits. The three strains were identified as Lactobacillus fermentum TMU121, Lactobacillus rhamnosus TMU094, and Pediococcus pentosaceous TMU457.
Lactic Acid Bacteria;Probiotics;In vitro;Broiler;
 Cited by
In vivo Antimutagenicity of Dadih Probiotic Bacteria towards Trp-P1,;;;;

아세아태평양축산학회지, 2009. vol.22. 1, pp.119-123 crossref(new window)
The Bacillus subtilis and Lactic Acid Bacteria Probiotics Influences Intestinal Mucin Gene Expression, Histomorphology and Growth Performance in Broilers,;;;;;

아세아태평양축산학회지, 2012. vol.25. 9, pp.1285-1293 crossref(new window)
Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 cell surface hydrophobicity and survival of the cells under adverse environmental conditions, Journal of Industrial Microbiology & Biotechnology, 2013, 40, 1, 85  crossref(new windwow)
Diversity of Lactic Acid Bacteria Isolated from Indonesian Traditional Fermented Foods, Microbiology Indonesia, 2014, 8, 2, 48  crossref(new windwow)
Purification of Antilisterial Peptide (Subtilosin A) from Novel Bacillus tequilensis FR9 and Demonstrate Their Pathogen Invasion Protection Ability Using Human Carcinoma Cell Line, Frontiers in Microbiology, 2016, 7, 1664-302X  crossref(new windwow)
Antimicrobial potential of bacteriocins in poultry and swine production, Veterinary Research, 2017, 48, 1  crossref(new windwow)
Begley, M., C. G. M. Gahan and C. Hill. 2005. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29:625-651. crossref(new window)

Buchanan, R. E. and N. E. Gibbons. 1994. Bergey's manual of determinative bacteriology, 9th ed. Williams & Wilkins, Baltimore.

Collins, J. K., G. Thornton and G. O. Sullivan. 1998. Selection of probiotic strains for human applications. Int. Dairy J. 8:487- 490. crossref(new window)

Corzo, G. and S. E. Gilliland. 1999. Measurement of bile salt hydrolase activity from Lactobacillus acidophilus based on disappearance of conjugated of bile salts. J. Dairy Sci. 82:466- 471. crossref(new window)

Delves-Broughton, J. 1990. Nisin and its uses as a food preservative. Food. Technol. 44:100-112.

Dharmawan, J., I. S. Surono and L. Y. Kun. 2006. Adhesion properties of indigenous Dadih lactic acid bacteria on human intestinal mucosal surface. Asian-Aust. J. Anim. Sci. 19:751- 755. crossref(new window)

Erkkila, S. and E. Petaja. 2000. Screening of the commercial meat starter cultures at low pH and in the presence of bile salts for potential use of probiotic use. Meat Sci. 55:297-300. crossref(new window)

Fuller, R. 1989. A review: Probiotics in man and animals. J. Appl. Bacteriol. 66:365-378. crossref(new window)

Garriga, M., M. Pascal, J. M. Montfort and M. Hugas. 1998. Selection of lactobacilli for chicken probiotic adjuncts. J. Appl. Microbiol. 84:125-132. crossref(new window)

Ghadban, G. S. 2002. Probiotics in broiler production- a review. Arch. Geflugelk. 22:49-58.

Gibson, G. R., P. B. Otaway and A. R. Robert. 2000. Prebiotics: new developments in functional foods. Chandos Publishing (Oxford) Limited, London, UK.

Gilliland, S. E. and M. L. Speck. 1977. Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Microbiol. 33:15-18.

Gilliland, S. E. and D. K. Walker. 1990. Factors to consider when selecting a culture of Lactobacillus acidophilus used as a dietary adjunct to produce a hypercholesterolemic effect in humans. J. Dairy Sci. 73:905-909. crossref(new window)

Gilliland, S. E., C. R. Nelson and C. Maxwell. 1985. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 49:377-381.

Gilliland, S. E., T. E. Staley and L. J. Bush. 1984. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J. Dairy Sci. 67:3045-3051. crossref(new window)

Gupta, P. K., B. K. Mital and S. K. Garg. 1996. Characterization of Lactobacillus acidophilus strains for use as dietary adjunct. Int. J. Food Microbiol. 29:105-109. crossref(new window)

Gusils, C., A. Perez Chaia, S. Gonzalez and G. Oliver. 1999. Lactobacilli isolated from chicken intestines: Potential use as probiotics. J. Food Protect. 62:252-256. crossref(new window)

Gusils, C., M. Bujazha and S. Gonzalez. 2002. Preliminary studies to design a probiotic for use in swine feed. Interciencia. 27:409-413.

Hood, S. K. and A. Zottola. 1988. Effect of low pH on the ability of Lactobacillus acidophilus to survive and adhere to human intestinal cells. J. Food Sci. 53:1514-1516. crossref(new window)

Huis in't Veld, J. H. J. and C. Shortt. 1996. Selection criteria for probiotic micro-organisms. In: Gut flora and health- past, present and future (Ed. A. R. Leeds and I. R. Rowland). International Congress and Symposium Series No. 219, Royal Society of Medicine Press Limited. pp. 27-36.

Jin, L. Z., W. Y. Ho, M. A. Abdullah and S. Jalaludin. 1998a. Growth performance, intestinal microbial populations, and serum cholesterol of broilers fed diets containing lactobacillus cultures. Poult. Sci. 77:1259-1265. crossref(new window)

Jin, L. Z., W. Y. Ho, M. A. Abdullah, M. A. Ali and S. Jalaludin. 1998b. Effects of adherent lactobacillus cultures on growth, weight of organs and intestinal microflora and volatile fatty acids in broilers. Anim. Feed Sci. Technol. 70:197-209. crossref(new window)

Jin, L. Z., W. Y. Ho, M. A. Abdullah, M. A. Ali and S. Jalaludin. 1996. Antagonistic effects of intestinal lactobacillus isolates on pathogens of chicken. Lett. Appl. Microbiol. 23:67-71. crossref(new window)

Joerger, M. C. and T. R. Klaenhammer. 1986. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 167:439-446. crossref(new window)

Juven, B. J., R. J. Meinersmann and N. J. Stern. 1991. Antagonistic effects of Lactobacilli and Pediococci to control intestinal colonization by human enteropathogens in live poultry. J. Appl. Bacteriol. 70:95-103. crossref(new window)

Juven, B. J., F. Schved and P. Linder. 1992. Antagonistic compounds produced by a chicken intestinal strain of Lactobacillus acidophilus. J. Food Protect. 55:157-161. crossref(new window)

Kim, G. B. and B. H. Lee. 2005. Biochemical and molecular insights into bile salt hydrolase in the gastrointestinal microflora - A review. Asian-Aust. J. Anim. Sci. 18:1505-1515. crossref(new window)

Kim, H. J., H. S. Shin, W. K. Ha, I. H. Yang and S. W. Lee. 2006. Characterization of lactic bacterial strains isolated from raw milk. Asian-Aust. J. Anim. Sci. 19:131-136.

Lankaputhra, W. E. and N. P. Shah. 1995. Survival of Lactobacillus acidophilus and Bifidobacterium spp. in the presence of acid and bile salts. Cult. Dairy Prod. J. 30:2-7.

Lewus, C. B., A. Kaiser and T. J. Montville. 1991. Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl. Environ. Microbiol. 57:1683-1688.

Marounek, M. and V. Rada. 1995. Susceptibility of poultry Lactobacilli to ionophore antibiotics. J.Vet. Med. 42:193-196. crossref(new window)

Mayra-Makinen, A., M. Manninen and M. Gyllenberg. 1983. The adherence of lactic acid bacteria to the columnar epithelium cells of pigs and calves. J. Appl. Bacteriol. 55:241-245. crossref(new window)

McKay, L. L. and K. A. Boldwin. 1990. Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiol. Rev. 87:3-14. crossref(new window)

Mulder, R. W. A. W., R. Havenaar and J. H. J. Huis in't Veld. 1997. Intervention strategies: the use of probiotics and competitive exclusion microfloras against contamination with pathogens in pigs and poultry. In: Probiotics 2. Applications and practical aspects (Ed. R. Fuller). Chapman and Hall, London, UK. pp. 187-205.

Nemcova, R., A. Laukova, S. Gancarcikova and R. Kastel. 1997. In vitro studies of porcine lactobacilli for possible probiotic use. Berl. Munch. Tierarztl. Wschr. 110:413-417.

Nurmi, E. and M. Rantala. 1973. New aspects of Salmonella infection in broiler production. Nature 241:210-211. crossref(new window)

Patterson, J. A. and K. M. Burkholder. 2003. Application of probiotics and probiotics in poultry production. Poult. Sci. 82: 627-631. crossref(new window)

Prasad, J., H. Gill, J. Smart and P. K. Gopal. 1999. Selection and characterization of lactobacillus and bifidobacterium strains for use as probiotics. Int. Dairy J. 12:993-1002.

Reid, G. and R. Friendship. 2002. Alternatives to antibiotic use: Probiotics for the gut. Anim. Biotechnol. 13:92-97.

SAS Institute Inc. 1990. SAS/STAT User's Guide: Version 6. 4th edn. SAS institute Inc., Carolina.

Schillinger, U. and F. K. Lucke. 1989. Antibacterial activity of Lactobacillus sake isolated from meat. App. Environ. Microbiol. 55:1901-1906.

Sjovall, J. 1959. Dietary glycine and taurine on bile acid conjugation in man; bile acids and steroids. Proc. Soc. Exp. Biol. Med. 100:676-678.

Steel, R. G. D. and J. H. Torrie. 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd edn. McGraw-Hill Book Company, New York.

Suskovic, J., B. Kos, J. Goreta and S. Matosic. 2001. Role of lactic acid bacteria and bifidobacteria in synbiotic effect. Food Technol. Biotechnol. 39:227-235.

Ten Brink, B., M. Minekus, J. M. B. M. van der Vossen, R. J. Leer and J. H. J. Huis in't Veld. 1994. Antimicrobial activity of lactobacilli: preliminary characterization and optimization of production of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus M46. J. Appl. Bacteriol. 77:140-148. crossref(new window)

Toit, M. D., C. M. A. P. Franz, L. M. T. Dicks, U. Schillinger, P. Haberer, B. Warlies, F. Ahrens and W. H. Holzapfel. 1998. Characterization and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. Int. J. Food Microbiol. 40:93-104. crossref(new window)

Tortuero, F. 1973. Influence of the implantation of Lactobacillus acidophilus in chicks on the growth, feed conversion, malabsorption of fats syndrome and intestinal flora. Poult. Sci. 52:197-203. crossref(new window)

Treagan, L. and L. Pulliam. 1982. Medical microbiology laboratory procedures. W.B. Saunders Company, Philadelphia. pp. 233-243.

Upreti, G. C. and R. D. Hinsdill. 1975. Production and mode of action of Lactocin 27: bacteriocin from a homofermentative lactobacillus. Antimicrob. Agents Ch. 7:139-145. crossref(new window)

Usman, H. A. 1999. Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J. Dairy Sci. 82:243-248. crossref(new window)

Wadström, T., K. Andersson, M. Sydow, L. Axelsson, S. Lindgren and B. Gullmar. 1987. Surface properties of lactobacilli isolated from the small intestine of pigs. J. Appl. Bacteriol. 62: 513-520. crossref(new window)

Yu, B., J. R. Liu, M. Y. Chiou, Y. R. Hsu and P. W. S. Chiou. 2007. The effects of probiotic Lactobacillus reuteri Pg4 strain on intestinal characteristics and performance in broilers. Asian- Aust. J. Anim. Sci. 20:1243-1251. crossref(new window)