Advanced SearchSearch Tips
Investigation of Deletion Variation and Methylation Patterns in the 5' LTR of Porcine Endogenous Retroviruses
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Investigation of Deletion Variation and Methylation Patterns in the 5' LTR of Porcine Endogenous Retroviruses
Jung, K.C.; Simond, D.M.; Moran, C.; Hawthorne, W.J.; Jeon, J.T.; Jin, D.I.; Lee, J.H.;
  PDF(new window)
The xenotransplantation of pig organs and cells can be related with a risk of transmission of infectious diseases to human. Previous findings indicate that the regulatory region of PERV for retroviral transcription, replication and integration into the cellular DNA is located on the 5' Long Terminal Repeat (LTR). The objective of this study is the investigation of methylation and deletion status of the PERV 5' LTR region which can be used for regulating PERV expression. We compared the sequences of genomic DNA and bisulfite-treated genomic DNA from PK-15 cells expressing PERV to observe the methylation status of the 5' LTR. Our results showed that the CpG sites of U3 were methylated and methylation was inconsistent in the R and U5 regions. Also, variable numbers of 18 bp repeats and 21 bp repeats were detected on 5' LTR by sequencing analysis. The consistent U3 methylation might be indicative of host suppression of expression of the retroviruses.
Pigs;Long Terminal Repeat (LTR);Porcine Endogenous Retroviruses (PERVs);Xenotransplantation;
 Cited by
Bednarik, D. P., J. A. Cook and P. M. Pitha. 1990. Inactivation of the HIV LTR by DNA CpG methylation: evidence for a role in latency. EMBO J. 9:1157-1164.

Bednarik, D. P., J. D. Mosca and N. B. Raj. 1987. Methylation as a modulator of expression of human immunodeficiency virus. J. Virol. 61:1253-1257.

Bird, A. P. and A. P. Wolffe. 1999. Methylation-induced repression-belts, braces, and chromatin. Cell 99:451-454. crossref(new window)

Cheung, P., C. D. Allis and P. Sassone-Corsi. 2000. Signaling to chromatin through histone modifications. Cell 103:263-271. crossref(new window)

Dieckhoff, B., A. Karlas, A. Hofmann, W. A. Kues, B. Petersen, A. Pfeifer, H. Niemann, R. Kurth and J. Denner. 2007. Inhibition of porcine endogenous retroviruses (PERVs) in primary porcine cells by RNA interference using lentiviral vectors. Arch. Virol. 152:629-634. crossref(new window)

Hanecak, R., S. Mittal, B. R. Davis and H. Fan. 1986. Generation of infectious Moloney murine leukemia viruses with deletions in the U3 portion of the long terminal repeat. Mol. Cell. Biol. 6:4634-4640.

Jung, K. C., S. L. Yu, T. H. Kim, J. T. Jeon, C. Rogel-Gaillard, C. S. Park, D. I. Jin, C. Moran and J. H. Lee. 2007. Insertional variations of two porcine endogenous retroviruses (PERVs) in Korean native pigs and asian wild boars. Asian-Aust. J. Anim. Sci. 20:461-465.

Lavie, L., M. Kitova, E. Maldener, E. Meese and J. Mayer. 2005. CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K (HML-2). J. Virol. 79:876-883. crossref(new window)

Le Tissier, P., J. P. Stoye, Y. Takeuchi, C. Patience and R. A. Weiss. 1997. Two sets of human-tropic pig retrovirus. Nature 16:681-682.

Scheef, G., N. Fischer, U. Krach and R. R. Tonjes. 2001. The number of a U3 repeat box acting as an enhancer in long terminal repeats of polytropic replication-competent porcine endogenous retroviruses dynamically fluctuates during serial virus passages in human cells. J. Virol. 75:6933-6940. crossref(new window)

Wilson, C. A., S. Laeeq, A. Ritzhaupt, W. Colon-Moran and F. K. Yoshimura. 2003. Sequence analysis of porcine endogenous retrovirus long terminal repeats and identification of transcriptional regulatory regions. J. Virol. 77:142-149. crossref(new window)

Wilson, C. A., S. Wong, J. Muller, C. E. Davidson, T. M. Rose and P. Burd. 1998. Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. J. Virol. 72:3082-3087.

Yoder, J. A., C. P. Walsh and T. H. Bestor. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13:335-340. crossref(new window)