JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of Xylanase on Growth and Gut Development of Broiler Chickens Given a Wheat-based Diet
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Xylanase on Growth and Gut Development of Broiler Chickens Given a Wheat-based Diet
Yang, Y.; Iji, P.A.; Kocher, A.; Mikkelsen, L.L.; Choct, M.;
  PDF(new window)
 Abstract
To study the working mechanisms for non-starch polysaccharidases to improve the growth performance of broiler chickens, a 21-day feeding trial was conducted. Two dietary treatments were included: 1) wheat diet (the control); 2) wheat+xylanase diet (xylanase, Allzyme PT, Alltech, Kentucky, USA). There were 8 replicates with 8 birds each for each treatment and the experimental diets were given to birds from hatch. Feed intake and body weight were measured on days 7 and 21. At the same ages, samples were taken for the determination of selected groups of luminal and mucosa-associated bacteria, mucosal morphology, brush-border membrane (BBM) bound enzyme activity and ileal nutrient digestibility. The xylanase supplement increased (p<0.05) body weight gain (BWG) and improved feed conversion ratio (FCR) at the end of the experiment but protein and starch digestibilities were not affected (p>0.05) by xylanase. Up to day 7, xylanase increased the counts of C. perfringens in the ileum and total anaerobic bacteria (TAB) in the caeca (p<0.05, p=0.07, respectively). By day 21, the counts of ileal lactobacilli (p<0.05) and TAB (p=0.07) were lower in birds given the xylanase-supplemented diet than in those on the control diet. No significant differences were observed in the counts of mucosa-associated lactobacilli and coliforms between xylanase treatment and the control at both ages. Villus height at the jejunum was not affected (p>0.05) by the supplement but crypt depth at the same site was reduced at day 7. Also, xylanase tended to increase the concentration of BBM protein (p = 0.09) and the specific activity of sucrase (p = 0.07) at day 21.
 Keywords
Xylanase;Growth Performance;Nutrient Digestibility;Gut Microflora;Intestinal Mucosal Morphology;Specific Activity of BBM Bound Enzymes;
 Language
English
 Cited by
 References
1.
Annison, G. and M. Choct. 1991. Anti-nutritive activities of cereal non-starch polysaccharides in broiler diets and strategies minimizing their effects. World's Poult. Sci. J. 47:232-242. crossref(new window)

2.
AOAC. 1994. Official Methods of Analysis, 16th edn. Association of Official Analytical Chemists, Arlington, Virginia, USA

3.
Apajalahti, J. H. A., A. Kettune and H. Graham. 2004. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's Poult. Sci. J. 60:223-232. crossref(new window)

4.
Bedford, M. R. 2001. The role of carbohydrases in feedstuff digestion. In: Poultry Feedstuffs: supply, composition, and nutritive value (Ed. J. McNab and K. N. Boorman) CAB international, Edinburgh, UK. pp. 319-336.

5.
Bedford, M. R. and H. L. Classen. 1992. Reduction of intestinal viscosity through manipulation of dietary rye and pentosanase concentrations is effected through changes in the carbohydrate composition of the intestinal aqueous phase and results in improved rates and food conversion efficiency of broiler chicks. J. Nutr. 122:137-142.

6.
Chiang, C.-C., Y. B. Wu and P. W. S. Chiou. 2005. Effects of xylanase supplementation to wheat-based diet on the performance and nutrient availability of broiler chickens. Asian-Aust. J. Anim. Sci. 18:1141-1146.

7.
Choct, M., G. Annison and R. P. Trimble. 1992. Soluble wheat pentosans exhibit different anti-nutritive activities in intact and caecectomized broiler chickens. J. Nutr. 122:2457-2465.

8.
Choct, M., R. J. Hughes and M. R. Bedford. 1999. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. Br. Poult. Sci. 40:419-422. crossref(new window)

9.
Choct, M., R. J. Hughes, J. Wang, M. R. Bedford, A. J. Morgan and G. Annison. 1996. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Br. Poult. Sci. 37:609-621. crossref(new window)

10.
Choct, M., R. J. Hughes, R. P. Trimble, K. Angkanapron and G. Annison. 1995. Non-starch polysaccharide-degrading enzymes increase the performance of broiler chickens fed wheat of low apparent metabolizable energy. J. Nutr. 125:485-492.

11.
Dahlqvist, A. 1964. Method for assay of intestinal disaccharidases. Anal. Biochem. 7:18-25. crossref(new window)

12.
Danicke, S., W. Vahjen, O. Simon and H. Jeroch. 1999. Effects of dietary fat type and xylanase supplementation to rye-based broiler diets on selected bacterial groups adhering to the intestinal epithelium, on transit time of feed, and on nutrient digestibility. Poult. Sci. 78:1292-1299.

13.
Engberg, R. M., M. S. Hedemann, S. Steenfeldt and B. B. Jensen. 2004. Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poult. Sci. 83:925-983.

14.
Forstner, G. G., S. M. Sabesin and K. J. Isselbacher. 1968. Rat intestinal microvillus membranes: purification and biochemical characterization. Biochem. J. 106:381-390.

15.
Gaskins, H. R. 2005. Host and intestinal microbiota negotiations in the context of animal growth efficiency (Online) www.feedinfo.com. Accessed in 2006

16.
Geyra, A., Z. Uni and D. Sklan. 2001. Enterocyte dynamics and mucosal development in the posthatch chick. Poult. Sci. 80:776-782.

17.
Holdeman, L. V., E. P. Cato and E. C. Moore. 1977. Anaerobic laboratory manual, Virginia Polytechnique Institute and State University, Blacksburg, VA.

18.
Holdsworth, E. S. 1970. The effect of vitamin D on enzyme activities in the mucosal cells of the chick small intestine. J. Membr. Biol. 3:43-53. crossref(new window)

19.
Hubener, K., W. Vahjen and O. Simon. 2002. Bacterial responses to different dietary cereal types and xylanase supplementation in the intestine of broiler chicken. Arch. Anim. Nutr. 56:167-187. crossref(new window)

20.
Iji, P. A. 1998. Natural development and dietary regulation of body and intestinal growth in broiler chickens. PhD Thesis, Adelaide, University of Adelaide, Adelaide, SA, Australia.

21.
Iji, P. A., R. J. Hughes, M. Choct and D. R. Tivey. 2001. Intestinal structure and function of broiler chickens on wheat-based diets supplemented with a microbial enzyme. Asian-Aust. J. Anim. Sci. 14:54-60

22.
Li, W.-F., J. Feng, Z.-R. Xu and C.-M. Yang. 2004. Effects of non-starch polysaccharides enzymes on pancreatic and small intestinal digestive enzyme activities in piglet fed diets containing high amounts of barley. World J. Gastroenterol. 10:856-859.

23.
Qiao, S., Y. Wu, C. Lai, L. Gong, W. Lu and D. Li. 2005. Properties of aspergillar xylanase and the effects of xylanase supplementation in wheat-based diets on growth performance and the blood biochemical values in broilers. Asian-Aust. J. Anim. Sci. 18:66-74.

24.
Ravindran, V. 2006. Broiler nutrition in New Zealand - Challenges and Strategies (Online) www.feedinfo.com. Accessed in 2006.

25.
Selle, P. H., K. H. Huang and W. I. Muir. 2003. Effects of nutrient specifications and xylanase plus phytase supplementation of wheat-based diets on growth performance and carcass traits of broiler chicks. Asian-Aust. J. Anim. Sci. 16:1501-1508.

26.
Sharma, R., F. Fernandezb, M. Hintonb and U. Schumachera. 1997. The influence of diet on the mucin carbohydrates in the chick intestinal tract. Cell. Mol. Life Sci. 53:935-942. crossref(new window)

27.
Shirazi-Beechey, S. P., B. A. Hirayama, Y. Wang, D. Scott, M. W. Smith and E. M. Wright. 1991. Ontogenic development of lamb intestinal sodium-glucose co-transporter is regulated by diet. J. Physiol. 437:691-698.

28.
Sileikiene, V., G. Diebold, M. Tafaj and R. Mosenthin. 2006. Effects of supplementation of xylanase, phospholipase or combination of both to a wheat based diet on digestive function in early-weaned piglets. J. Anim. Feed Sci. 15:47-55.

29.
Silva, S. S. and R. R. Smithard. 1996. Exogenous enzymes in broiler diets:crypt cell proliferation, digesta viscosity, short chain fatty acids and xylanase in the jejunum. Br. Poult. Sci. 37:S77-S79.

30.
Sklan, D. and Y. Noy. 2000. Hydrolysis and absorption in the small intestines of posthatch chicks. Poult. Sci. 79:1306-1310.

31.
Steenfeldt, S., M. Hammershoj, A. Mullertz and F. J. Jensen. 1998. Enzyme supplementation of wheat-based diets for broilers 2. Effect on apparent metabolisable energy and nutrient digestibility. Anim. Feed Sci. Tech. 75:45-64. crossref(new window)

32.
Untawale, G. G., A. Pietraszek and J. Mcginnis. 1978. Effect of diet on adhesion and invasion of microflora in the intestinal mucosa of chicks. Proc. Soc. Exper. Biol. Med. 159:276-280.

33.
Vahjen, W., K. Glaser, K. Schafer and O. Simon. 1998. Influence of xylanase-supplemented feed on the development of selected bacterial groups in the intestinal tract of broiler chicks. J. Agric. Sci. 130:489-500. crossref(new window)

34.
Vahjen, W., T. Osswald, K. Schafer and O. Simon. 2007. Comparison of a xylanase and a complex of non starch polysaccharide-degrading enzymes with regard to performance and bacterial metabolism in weaned piglets. Arch. Anim. Nutr. 61:90-102. crossref(new window)

35.
Willing, B. P. and A. G. Van Kessel. 2007. Enterocyte proliferation and apoptosis in the caudal small intestine is influenced by the composition of colonizing commensal bacteria in the neonatal gnotobiotic pig. J. Anim. Sci. 85:3256-3266. crossref(new window)

36.
Wu, Y. B., V. Ravindran, D. G. Thomas, M. J. Birtles and W. H. Hendriks. 2004a. Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus. Br. Poult. Sci. 45:76-84. crossref(new window)

37.
Wu, Y. B., V. Ravindran, D. G. Thomas, M. J. Birtles and W. H. Hendriks. 2004b. Influence of method of whole wheat inclusion and xylanase supplementation on the performance, apparent metabolisable energy, digestive tract measurements and gut morphology of broilers. Br. Poult. Sci. 45:385-394. crossref(new window)

38.
Zoetendal, E. G., C. T. Collier, S. Koike, R. I. Mackie and H. R. Gaskins. 2004. Molecular ecological analysis of the gastrointestinal microbiota: a review. J. Nutr. 134:465-472.