Advanced SearchSearch Tips
Effects of Organic Acids on Growth Performance, Gastrointestinal pH, Intestinal Microbial Populations and Immune Responses of Weaned Pigs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Organic Acids on Growth Performance, Gastrointestinal pH, Intestinal Microbial Populations and Immune Responses of Weaned Pigs
Li, Zheji; Yi, Ganfeng; Yin, Jingdong; Sun, Peng; Li, Defa; Knight, Chris;
  PDF(new window)
Two experiments were conducted to compare the effects of feeding organic acids and antibiotic growth promoters in weaned pigs. In Exp. 1, 96 nursery pigs (Large WhiteLandrace; initial weight ) were randomly allotted into one of four dietary treatments. Pigs in treatment 1 were fed a complex starter diet. Treatments 2 to 4 were the same as treatment 1 but supplemented with antibiotics (200 ppm chlortetracycline plus 60 ppm Lincospectin), 0.5% potassium diformate or 0.5% dry organic acid blend ACTIVATE Starter DA (ASD). During the 4-week post-weaning period, pigs fed ASD or antibiotics had better gain (p = 0.03) and feed efficiency (p = 0.04) than pigs fed the control diet. On d 14 post-weaning, pigs fed the control diet had the lowest fecal lactobacilli count among all dietary treatments (p = 0.02), whereas pigs fed ASD or antibiotics had a trend for lower fecal E. coli count compared to the control pigs (p = 0.08). Serum insulin-like growth factor-1 (IGF-1) of pigs fed ASD did not differ from pigs fed the control diet (p>0.05) at d 14 after weaning. In Exp. 2, 24 weaned pigs (Large WhiteLong White; initial weight ) were allotted into four groups and housed individually. Pigs were fed a control diet or diets supplemented with antibiotics (100 ppm colistin sulfate, 50 ppm Kitasamycin plus 60 ppm Olaquindox), 0.5% or 1% ASD. All pigs were orally challenged with E. coli on d 5. During d 5 to 14 after challenge, pigs fed antibiotics, 0.5% or 1% ASD had better gain (p = 0.01) and feed efficiency (p = 0.03) than pigs fed the control diet. On d 14, compared to the control pigs, pigs fed 0.5% ASD had higher lactobacilli in the duodenum and pigs fed 1% ASD and antibiotics had a trend for higher lactobacilli in the ileum (p = 0.08). Pigs fed antibiotics, 0.5% or 1% ASD diets tended to have decreased ileal E. coli count compared to those fed the control diet (p = 0.08). Serum interleukin-6 and cortisol and digesta pH values were not affected by treatment or time. These results indicate that feeding ASD can improve the growth performance of weaning pigs, mainly via modulating intestinal microflora populations without affecting gastrointestinal pH or immune indices.
Organic Acids;Antibiotics;Weaned Pigs;Growth Performance;Gastrointestinal pH;Microbial Population;
 Cited by
Effect of Wood Vinegar on the Performance, Nutrient Digestibility and Intestinal Microflora in Weanling Pigs,;;;;;

아세아태평양축산학회지, 2009. vol.22. 2, pp.267-274 crossref(new window)
Effects of Cordyceps militaris Mycelia on In vitro Rumen Microbial Fermentation,;;;;;;;;

아세아태평양축산학회지, 2009. vol.22. 2, pp.201-205 crossref(new window)
Calcium Digestibility and Metabolism in Pigs,;;

아세아태평양축산학회지, 2014. vol.27. 1, pp.1-9 crossref(new window)
Comparison of Single and Blend Acidifiers as Alternative to Antibiotics on Growth Performance, Fecal Microflora, and Humoral Immunity in Weaned Piglets,;;;;;

아세아태평양축산학회지, 2014. vol.27. 1, pp.93-100 crossref(new window)
Effects of Bacillus subtilis KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets,;;;;;;

아세아태평양축산학회지, 2014. vol.27. 8, pp.1131-1140 crossref(new window)
Protected Organic Acid Blends as an Alternative to Antibiotics in Finishing Pigs,;;;

아세아태평양축산학회지, 2014. vol.27. 11, pp.1600-1607 crossref(new window)
라듐 동위원소를 이용한 육상기원 물의 여자만 표층에서의 체류시간 측정,황동운;홍석진;김형철;정래홍;이원찬;

한국환경분석학회지, 2014. vol.17. 4, pp.195-206
Protein–phytate interactions in pig and poultry nutrition: a reappraisal, Nutrition Research Reviews, 2012, 25, 01, 1  crossref(new windwow)
Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds, Journal of Animal Physiology and Animal Nutrition, 2012, 97, 2, 207  crossref(new windwow)
Dual Effects of Sodium Phytate on the Structural Stability and Solubility of Proteins, Journal of Agricultural and Food Chemistry, 2013, 61, 2, 290  crossref(new windwow)
Protected Organic Acid Blends as an Alternative to Antibiotics in Finishing Pigs, Asian-Australasian Journal of Animal Sciences, 2014, 27, 11, 1600  crossref(new windwow)
Effects of <i>Bacillus subtilis</i> KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets, Asian-Australasian Journal of Animal Sciences, 2014, 27, 8, 1131  crossref(new windwow)
The site of net absorption of Ca from the intestinal tract of growing pigs and effect of phytic acid, Ca level and Ca source on Ca digestibility, Archives of Animal Nutrition, 2014, 68, 2, 126  crossref(new windwow)
Analysis of the effect of dietary protected organic acid blend on lactating sows and their piglets, Revista Brasileira de Zootecnia, 2016, 45, 2, 39  crossref(new windwow)
Rearing conditions affected responses of weaned pigs to organic acids showing a positive effect on digestibility, microflora and immunity, Animal Science Journal, 2016, 87, 10, 1267  crossref(new windwow)
Current status and prospects for in-feed antibiotics in the different stages of pork production — A review, Asian-Australasian Journal of Animal Sciences, 2017, 30, 12, 1667  crossref(new windwow)
Anderson, D. B., V. J. McCracken, R. I. Aminov, J. M. Simpson, R. I. Mackie, M. W. A. Verstegen and H. R. Gaskins. 1999. Gut microbiology and growth-promoting antibiotics in swine. Pig News Inf. 20:115N-112N.

Barrow, P. A., R. Fuller and M. J. Nweport. 1977. Changes in the microflora and physiology of the anteriorintestinal tract of pigs weaned at 2 days with special reference to the pathogenesis if diarrhea. Infect. Immun. 18:586-595.

Blank, R., W. C. Sauer, R. Mosenthin, J. Zentek, S. Huang and S. Roth. 2001. Effect of fumaric acid supplementation and dietary buffering capacity on the concentration of microbial metabolites in ileal digesta of young pigs. Can. J. Anim. Sci. 81:345-353. crossref(new window)

Bosi, P., H. J. Jung, In K. Han, S. Perini, J. A. Cacciavillani, L. Casini, D. Creston, C. Gremokolini and S. Mattuzzi. 1999. Effects of dietary buffering characteristic and protected or unprotected acids on piglet growth, digestibility and characteristics of gut content. Asian-Aust. J. Anim. Sci. 12:1104-1110.

Burkey, T. E., S. S. Dritz, J. C. Nietfeld, B. J. Johnson and J. E. Minton. 2004. Effects of dietary mananoligosaccharide and sodium chlorate on the growth performance, acute-phase response, and bacterial shedding of weaned pigs challenged with Salmonella enterica serotype Typhimurium. J. Anim. Sci. 82:397-404.

Choct, M. 2001. Alternatives to in-feed antibiotics in monogastric animal industry. ASA Technical Bulletin. AN30:1-6.

Cole, D. J. A., R. M. Beal and J. R. Luscombe. 1968. The effect on perfoemance and bacterial flora of lactic acid, propionic acid, calcium propionate and calcium acrylate in the drinking water of weaned pigs. Vet. Rec. 83:459-464. crossref(new window)

Collier, C. T., M. R. Smiricky-Tjardes, D. M. Albin, J. E. Wubben, V. M. Gabert, B. Deplancke, D. Bane, D. B. Anderson and H. R. Gaskins. 2003. Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoters. J. Anim. Sci. 81:3035-3045.

Dibner, J. J. and P. Buttin. 2002. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J. Appl. Poult. Res. 11:453-463.

Dibner, J. J. and J. D. Richards. 2005. Antibiotic growth promoters in Agriculture: history and mode of action. Poult. Sci. 84:634-643.

Dibner, J. J., C. Knight, G. F. Yi and J. D. Richards. 2007. Gut development and health in the absence of antibiotic growth promoters. Asian-Aust. J. Anim. Sci. 20:1007-1014.

Doyle, M. E. 2001. Alternatives to antibiotic use for growth promotion in animal husbandary. Food Res. April:1-17.

Eller, C., M. R. Crabill and M. P. Bryant. 1971. Anaerobic roll tube media for nonselective enumeration and isolation of bacteria in human feces. Appl. Microbiol. 22:522-529.

Francis, D. H., P. A. Grange, D. H. Zeman, D. R. Baker, R. G. Sun and A. K. Erickson. 1998. Expression of mucin-type glycoprotein K88 receptors strongly correlates with piglet susceptibility to K88 enterotoxigenic Escherichia coli, but adhesion of this bacterium to brush border does not. Infec. Immun. 66:4050-4055.

Galfi, P. and J. Bokori. 1990. Feeding trial in pigs with a diet containing sodium n-butyrate. Acta. Vet. Hung. 38:3-17.

Giesting, D. W. and R. A. Easter. 1985. Response of starter pigs to supplementation of corn soybean meal diets with organic acids. J. Anim. Sci. 60:1288-1294.

Harada, E., K. Hiroko, E. Kobayashi and H. Tsuchita. 1988. Postnatal development of biliary and pancreatic exocrine secretion in piglets. Comp. Biochem. Phsiol. 91A:43-51.

Hathaway, M. R., W. R. Dayton, M. E. White and M. S. Pampusch. 2003. Effects of antimicrobials and weaning on porcine serum insulin-like growth factor binding protein levels. J. Anim. Sci. 81:1456-1463.

Jenkins, N. L., J. L. Turner, S. S. Dritz, S. K. Durham and J. E. Minton. 2004. Changes in circulating insulin-like growth factor-1, insulin-like growth factor binding proteins, and leptin in weaned pigs infected with Salmonella enterica serovar Typhimurium. Domest. Anim. Endocrinol. 26:49-60. crossref(new window)

Jones, P. H., J. M. Roe and B. G. Miller. 2001. Effects of stressors on immune parameters and on the fecal shedding of enterotoxigenic Escherichia coli in piglets following experimental inoculation. Res. Vet. Sci. 70:9-17. crossref(new window)

Kelley, K. W. 2004. From hormones to immunity: The physiology of immunology. Brain Behav. Immun. 18:95-113. crossref(new window)

Kil, D. Y., L. G. Piao, H. F. Long, J. S. Lim, M. S. Yun, C. S. Kong W. S. Ju, H. B. Lee and Y. Y. Kim. 2006. Effects of organic or inorganic acid supplementation on growth performance, nutrient digestibility and white blood cell counts in weaning pigs. Asian-Aust. J. Anim. Sci. 19:252-261.

Kim, Y. G., J. D. Lohakare, J. H. Yun, S. Heo and B. J. Chae. 2007. Effect of feeding levels of microbial fermented soy protein on the growth performance, nutrient digestibility and intestinal morphology in weaned piglets. Asian-Aust. J. Anim. Sci. 20:399-404.

Kirchgessner, M. and F. X. Roth. 1988. Ergotrope Effekte durch Sauren in der Ferkelaufzucht und Schweinemast. Ubers Tierernahrung. 16:93-108.

Kluge, H., J. Broz and K. Eder. 2006. Effect of benzoic acid on growth performance, nutrient digestibility, nitrogen balance, gastrointestinal microflora and parameters of microbial metabolism in piglets. J. Anim. Physiol. Anim. Nutr. 90:316-324. crossref(new window)

Kommera, S. K., R. D. Mateo, F. J. Neher and S. W. Kim. 2006. Phytobiotics and organic acids as potential alternatives to the use of antibiotics in nursery pig diets. Asian-Aust. J. Anim. Sci. 19:1784-1789.

Lai, C. H., J. D. Yin, D. F. Li, L. D. Zhao, S. Y. Qiao and J. J. Xing. 2005. Conjugated linoleic acid attenuates the production and gene expression of proinflammatory cytokines in weaned pigs challenged with lipopolysaccharide. J. Nutr. 135:239-244.

Mathew, A. G., A. L. Sutton, A. B. Scheidt, D. M. Forsyth, J. A. Patterson and D. T. Kelly. 1991. Effects of a propionic acid containing feed additive on performance and intestinal microbial fermentation of the weanling pigs. In: Proc Sixth Int Symposium on the Digestive Physiology in Pigs. PUDOC. Wageningen, The Netherlands, pp. 464-469.

Mathew, A. G., M. A. Franklin, W. G. Upchurch and S. E. Chattin. 1996. Influence of weaning age on ileal microflora and fermentation acids in young pigs. Nutr. Res. 16:817-827. crossref(new window)

Mroz, Z. 2005. Organic acids as alternatives to antibiotic growth promoters for pigs. In: Advances in Pork Production, (Ed. G. Foxcroft). University of Alberta Press, Edmonton, Alberta. pp. 169-182.

Namkung, H., M. Li, J. Gong, H. Yu, M. Cottrill and C. F. M. de Lange. 2004. Impact of feeding blends of organic acids and herbal extracts on growth performance, gut microbiota and digestive function in newly weaned pigs. Can. J. Anim. Sci. 84:697-704. crossref(new window)

National Research Council (NRC). 1998. Nutrient requirements of swine. 10th ed. National Academy Press, Washington, DC.

Omogbenigun, F. O., C. M. Nyachoti and B. A. Slominski. 2003. The effect of supplementing microbial phytase and organic acids to a corn-soybean based diet fed to early-weaned pigs. J. Anim. Sci. 81:1806-1813.

Partanen, K. H. and Z. Morz. 1999. Organic acids for performance enhancement in pig diets. Nutr. Res. Rev. 12:117-145. crossref(new window)

Partanen, K., J. Valaja, J. Siljander-Rasi, T. Jalava and S. Panula. 1998. Effects of carbadox or formic acid and diet type on ileal digestion of amino acids by piglets. J. Anim. Feed. Sci. 7:199-203.

Paulicks, H. R., F. X. Roth and M. Kirchgessner. 1996. Dose effects of potassium diformate (FormiTM LHS) on the performance of growing piglets. Agribiol Res 49:318-326.

Paulicks, H. R., F. X. Roth and M. Kirchgessner. 2000. Effects of potassium diformate (FormiTM LHS) in combination with different grains and energy desities in the feed on growth performance of weaned piglets. J. Anim. Physiol. Anim. Nutr. 84:102-111. crossref(new window)

Ravindran, V. and E. T. Kornegay. 1993. Acidification of weaner pig diets: A review. J. Sci. Food Agric. 62:313-322. crossref(new window)

Richards, J. D., J. Gong and C. F. M. de Lange. 2005. The gastrointestinal microbiota and its role in monogastric nutrition and health with an emphasis on pigs: current understanding, possible modulations, and new technologies for ecological studies. Can. J. Anim. Sci. 85:421-435. crossref(new window)

Risley, C. R., E. T. Kornegay, M. D. Lindemann, C. M. Wood and W. N. Eigel. 1992. Effect of feeding organic acids on selected intestinal content measurements at varying times postweaning in pigs. J. Anim. Sci. 70:196-206.

Roura, E., J. Homedes and K. C. Klasing. 1992. Prevention of immunologic stress contributes to the growth-pronoting ability of dietary antibiotics in chicks. J. Nutr. 122:2283-2290.

Sacakli, P., A. Sehu, A. Ergun, B. Genc and Z. Selcuk. 2006. The effect of phytase and organic acid on growth performance, carcass yield and tibia ash in quails fed diets with low levels of non-phytate phosphorus. Asian-Aust. J. Anim. Sci. 19:198-202.

Sciopioni, R., G. Zaghini and B. Biavati. 1978. Researches on the use of acidified diets for early weaning of piglets. Zootechnol Nutr. Anim. 4:201-218.

Sissons, J. W. 1989. Potential of probiotic organisms prevent diarrhea and promote digestion in farm animals - a review. J. Sci. Food Agric. 49:1-13. crossref(new window)

Tao, Y., C. Ying, Z. Ni, J. Li and L. Li. 1982. Clinical Biochemical Analysis, 2nd edn. Shanghai: Shanghai Scientific Technical Press, pp. 102-103.

Thaela, M. J., M. S. Jensen, S. G. Pierzynowski, S. Jakob and B. B. Jensen. 1998. Effect of lactic acid supplementation in pigs after weaning. J. Anim. Feed Sci. 7:181-183.

Yi, G. F., J. A. Carroll, G. L. Allee, A. M. Gaines, D. C. Kendall, J. L. Usry, Y. Toride and S. Izuru. 2005. Effect of glutamine and spray-dried plasma on growth performance, small intestinal morphology, and immune responses of Escherichia coli $K88^{+}$-challenged weaned pigs. J. Anim. Sci. 83:634-643.

Yi, G. F., R. Harrell, J. J. Dibner, C. S. Schasteen, J. Wu, K. R. Perryman and C. D. Knight. 2006. Evaluation of 2-hydroxy-4-(methylthio) butanoic acid (HMTBa) and HMTB-containing organic acid blends in different nursery pig feed programs. (submitted to J. Anim. Sci.).