JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs
Metzler, B.U.; Mosenthin, R.;
  PDF(new window)
 Abstract
Dietary fiber is an inevitable component in pig diets. In non-ruminants, it may influence many physiological processes in the gastrointestinal tract (GIT) such as transit time as well as nutrient digestion and absorption. Moreover, dietary fiber is also the main substrate of intestinal bacteria. The bacterial community structure is largely susceptible to changes in the fiber content of a pig's diet. Indeed, bacterial composition in the lower GIT will adapt to the supply of high levels of dietary fiber by increased growth of bacteria with cellulolytic, pectinolytic and hemicellulolytic activities such as Ruminococcus spp., Bacteroides spp. and Clostridium spp. Furthermore, there is growing evidence for growth promotion of beneficial bacteria, such as lactobacilli and bifidobacteria, by certain types of dietary fiber in the small intestine of pigs. Studies in rats have shown that both phosphorus (P) and calcium (Ca) play an important role in the fermentative activity and growth of the intestinal microbiota. This can be attributed to the significance of P for the bacterial cell metabolism and to the buffering functions of Ca-phosphate in intestinal digesta. Moreover, under P deficient conditions, ruminal NDF degradation as well as VFA and bacterial ATP production are reduced. Similar studies in pigs are scarce but there is some evidence that dietary fiber may influence the ileal and fecal P digestibility as well as P disappearance in the large intestine, probably due to microbial P requirement for fermentation. On the other hand, fermentation of dietary fiber may improve the availability of minerals such as P and Ca which can be subsequently absorbed and/or utilized by the microbiota of the pig's large intestine.
 Keywords
Dietary Fiber;Bacteria;Fermentation;Phosphorus;Pigs;
 Language
English
 Cited by
1.
Potential of Using Maize Cobs in Pig Diets - A Review,;;;;

아세아태평양축산학회지, 2015. vol.28. 12, pp.1669-1679 crossref(new window)
1.
Effect of swine based probiotic on performance, diarrhoea scores, intestinal microbiota and gut health of grower-finisher crossbred pigs, Livestock Science, 2017, 195, 74  crossref(new windwow)
2.
Addition of inulin, alfalfa and citrus pulp in diets for piglets: Influence on nutritional and faecal parameters, intestinal organs, and colonic fermentation and bacterial populations, Livestock Science, 2015, 178, 243  crossref(new windwow)
3.
Interactive Effects of Indigestible Carbohydrates, Protein Type, and Protein Level on Biomarkers of Large Intestine Health in Rats, PLOS ONE, 2015, 10, 11, e0142176  crossref(new windwow)
4.
Effects of dietary fibre source on microbiota composition in the large intestine of suckling piglets, FEMS Microbiology Letters, 2016, 363, 14, fnw138  crossref(new windwow)
5.
Effects of feeding incremental levels of maize cob meal on physicochemical properties of bulkiness in digesta in growing pigs, Livestock Science, 2014, 170, 124  crossref(new windwow)
6.
Dietary fibres modulate the composition and activity of butyrate-producing bacteria in the large intestine of suckling piglets, Antonie van Leeuwenhoek, 2017, 110, 5, 687  crossref(new windwow)
7.
Relationship between time spent eating and nutritionally related blood metabolites of growing pigs fed on diets containing graded levels of fibre, Animal Production Science, 2017, 57, 6, 1106  crossref(new windwow)
8.
Impacts of human lysozyme transgene on the microflora of pig feces and the surrounding soil, Journal of Biotechnology, 2012, 161, 4, 437  crossref(new windwow)
9.
Prebiotics in aquaculture: a review, Aquaculture Nutrition, 2010, 16, 2, 117  crossref(new windwow)
10.
Fermented and extruded wheat bran in piglet diets: impact on performance, intestinal morphology, microbial metabolites in chyme and blood lipid radicals, Archives of Animal Nutrition, 2015, 69, 5, 378  crossref(new windwow)
11.
Effect of dietary mineral level and inulin inclusion on phosphorus, calcium and nitrogen utilisation, intestinal microflora and bone development, Journal of the Science of Food and Agriculture, 2010, 90, 14, 2447  crossref(new windwow)
12.
Oligosaccharides in Urine, Blood, and Feces of Piglets Fed Milk Replacer Containing Galacto-oligosaccharides, Journal of Agricultural and Food Chemistry, 2015, 63, 50, 10862  crossref(new windwow)
13.
Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion, Food & Function, 2014, 5, 6, 1063  crossref(new windwow)
14.
The Effects of GH Transgenic Goats on the Microflora of the Intestine, Feces and Surrounding Soil, PLOS ONE, 2015, 10, 10, e0139822  crossref(new windwow)
15.
Inulin as a growth promoter in diets for rabbits, Revista Brasileira de Zootecnia, 2013, 42, 12, 885  crossref(new windwow)
16.
Nutritional strategies to cope with reduced litter weight gain and total tract digestibility in lactating sows, Journal of Animal Physiology and Animal Nutrition, 2016  crossref(new windwow)
17.
Amino acid metabolism in the portal-drained viscera of young pigs: effects of dietary supplementation with chitosan and pea hull, Amino Acids, 2010, 39, 5, 1581  crossref(new windwow)
18.
New insight into the role of resistant starch in pig nutrition, Animal Feed Science and Technology, 2015, 201, 1  crossref(new windwow)
19.
Fermentation of Dietetic Fiber from Green Bean and Prickly Pear Shell by Pure and Mixture Culture of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum 450B, Current Microbiology, 2017, 74, 6, 691  crossref(new windwow)
20.
Influence of physicochemical properties of fibrous diets on behavioural reactions of individually housed pigs, Livestock Science, 2013, 157, 2-3, 527  crossref(new windwow)
21.
Performance of growing pigs fed diets based on by-products of maize and wheat processing, Tropical Animal Health and Production, 2013, 45, 2, 441  crossref(new windwow)
22.
The impact of phosphorus on the immune system and the intestinal microbiota with special focus on the pig, Nutrition Research Reviews, 2015, 28, 01, 67  crossref(new windwow)
23.
Effects of exogenous phytase and xylanase, individually or in combination, and pelleting on nutrient digestibility, available energy content of wheat and performance of growing pigs fed wheat-based diets, Asian-Australasian Journal of Animal Sciences, 2016, 30, 1, 57  crossref(new windwow)
24.
Dietary calcium concentration and cereals differentially affect mineral balance and tight junction proteins expression in jejunum of weaned pigs, British Journal of Nutrition, 2015, 113, 07, 1019  crossref(new windwow)
25.
Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets, Archives of Animal Nutrition, 2014, 68, 4, 263  crossref(new windwow)
26.
Potential of Using Maize Cobs in Pig Diets — A Review, Asian-Australasian Journal of Animal Sciences, 2015, 28, 12, 1669  crossref(new windwow)
27.
In Vitro Fermentation of Porcine Milk Oligosaccharides and Galacto-oligosaccharides Using Piglet Fecal Inoculum, Journal of Agricultural and Food Chemistry, 2016, 64, 10, 2127  crossref(new windwow)
 References
1.
Andrieux, C. and E. Sacquet. 1983. Effect of microflora and lactose on the absorption of calcium, phosphorus and magnesium in the hindgut of the rat. Repr. Nutr. Dev. 23:259- 71. crossref(new window)

2.
Andrieux, C. and E. Sacquet. 1986. Effects of amylomaize starch on mineral metabolism in the adult rat: role of the microflora. J. Nutr. 116:991-998.

3.
Bach Knudsen, K. E. 2001. The nutritional significance of "DF" analysis. Anim. Feed Sci. Technol. 90:3-20. crossref(new window)

4.
Bach Knudsen, K. E. and I. Hansen. 1991. Gastrointestinal implications in pigs of wheat and oat fractions. 1. Digestibility and bulking properties of polysaccharides and other major constituents. Br. J. Nutr. 70:537-556. crossref(new window)

5.
Bach Knudsen, K. E., B. B. Jensen and I. Hansen. 1991. Gastrointestinal implications in pigs of wheat and oat fractions. 2. Microbial activity in the gastrointestinal tract. Br. J. Nutr. 65:233-248. crossref(new window)

6.
Barrera, M., M. Cervantes, W. C. Sauer, A. B. Araiza, N. Torrentera and M. Cervantes. 2004. Ileal amino acid digestibility and performance of growing pigs fed wheat-based diets supplemented with xylanase. J. Anim. Sci. 82:1997-2003.

7.
Bovee-Oudenhoven, I. M. J., D. S. M. L. Termont, P. J. Heidt and R. Van der Meer. 1997a. Increasing the intstinal resistance of rats to the invasive pathogen Salmonella enteritidis: additive effects of dietary lactulose and calcium. Gut 40:497-504.

8.
Bovee-Oudenhoven, I. M. J., D. S. M. L. Termont, A. H. Weerkamp, M. A. W. Faassen-Peters and R. Van der Meer. 1997b. Dietary calcium inhibits the intestinal colonization and translocation of Salmonella in rats. Gastroenterol. 113:550-557. crossref(new window)

9.
Bovee-Oudenhoven, I. M., M. L. Wissink, J. T. Wouters and R. Van der Meer. 1999. Dietary calcium phosphate stimulates intestinal lactobacilli and decreases the severity of a Salmonella infection in rats. J. Nutr. 129:607-612.

10.
Breves, G. and B. Schroder. 1991. Comparative aspects of gastrointestinal phosphorus metabolism. Nutr. Res. Rev. 4:125- 140. crossref(new window)

11.
Bruce, J. A. M. and F. Sundstol. 1995. The effect of microbial phytase in diets for pigs on apparent ileal and faecal digestibility, pH and flow of digesta measurements in growing pigs fed a high-fibre diet. Can. J. Anim. Sci. 75:121-127. crossref(new window)

12.
Caldwell, D. R., M. Keeney, J. S. Baron and J. F. Kelley. 1973. Sodium and other inorganic growth requirements of Bacteroides amylophilus. J. Bacteriol. 114:782-789.

13.
Canibe, N., O. Hojberg, S. Hojsgaard and B. B. Jensen. 2005. Feed physical form and formic acid addition to the feed affect the gastrointestinal ecology and growth performance of growing pigs. J. Anim. Sci. 83:1287-1302.

14.
Cherbut, C., E. Albina, M. Champ, J. L. Doublier and G. Lecannu. 1990. Action of guar gums on the viscosity of digestive contents and on the gastrointestinal motor function in pigs. Digestion 46:205-213. crossref(new window)

15.
Demigne, C., M.-A. Levrat and C. Remesy. 1989. Effects of feeding fermentable carbohydrates on the cecal concentrations of minerals and their fluxes between the cecum and blood plasma in the rat. J. Nutr. 119:1625-1630.

16.
Den Hartog, L. A., J. Huisman, W. J. G. Thielen, G. H. A. Van Schayk, H. Boer and E. J. Weerden. 1988. The effect of including various structural polysaccharides in pig diets on ileal and faecal digestibility of amino acids and minerals. Livest. Prod. Sci. 18:157-170. crossref(new window)

17.
Dierick, N. A., I. J. Vervaeke, D. I. Demeyer and J. A. Decuypere. 1989. Approach to the energetic importance of DF digestion in pigs. I. Importance of fermentation in the overall energy supply. Anim. Feed Sci. Technol. 23:141-167. crossref(new window)

18.
Doerner, K. C. and B. A. White. 1990. Assessment of the endo- 1,4-$\beta$-glucanase components of Ruminococcus flavefaciens FD-1. Appl. Environ. Microbiol. 56:1844-1850.

19.
Dongowski, G., A. Lorenz and J. Proll. 2002. The degree of methylation influences the degradation of pectin in the intestinal tract of rats in vitro. J. Nutr. 132:1935-1944.

20.
Durand, M. and S. Komisarczuk. 1988. Influence of major minerals on rumen microbiota. J. Nutr. 118:249-260.

21.
Durmic, Z., D. W. Pethik, J. K. Pluske and D. J. Hampson. 1998. Changes in bacterial populations in the colon of pigs fed different sources of DF, and the development of swine dysentery after experimental infection. J. Appl. Microbiol. 85:574-582. crossref(new window)

22.
Durmic, Z., D. W. Pethick, B. P. Mulan, J. M. Accioly, H. Schulze and D. J. Hampson. 2002. Evaluation of large-intestinal parameters associated with dietary treatments designed to reduce the occurrence of swine dysentery. Br. J. Nutr. 88:159- 169. crossref(new window)

23.
Ewing, W. N. and D. J. A. Cole. 1994. The living gut. Context Publications, Dungannon, UK.

24.
Fan, M. Z. and E. J. Squires. 2003. Manipulation of hindgut fermentation to reduce the excretion of selected odor-causing compounds in pig manure. Final project report-supported by Canadian Pork Council (CPC), and the Agriculture, Agri-Food Canada (AAFC) Multiple Partners' Hog Environmental Management Strategy (HEMS) Program. Alberta, Canada.

25.
Fang, R. J., T. J. Li, F. G. Yin, Y. L. Yin, X. F. Kong, K. N. Wang, Z. Yuan, G. Y. Wu, J. H. He, Z. Y. Deng and M. Z. Fan. 2007. The additivity of true or apparent phosphorus digestibility values in some feed ingredients for growing pigs. Asian-Aust. J. Anim. Sci. 20:1092-1099.

26.
Francis, G. L., J. M. Gawthorne and G. B. Storer. 1978. Factors affecting the activity of cellulases isolated from the rumen digesta of sheep. Appl. Environ. Microbiol. 36:643-649.

27.
Gardner, R. M., K. C. Doerner and B. A. White. 1987. Purification and characterization of an exo-$\beta$-1,4-glucanase from Ruminococcus flavefaciens FD-1. J. Bacteriol. 169:4581-4588.

28.
Govers, M. J. A. P. and R. van der Meer. 1993. Effects of dietary calcium and phosphate on the intestinal interactions between calcium, phosphate, fatty acids, and bile acids. Gut 34:365-370. crossref(new window)

29.
Graham, H., K. Hesselman and P. Aman. 1986. The influence of wheat bran and sugar-beet pulp on the digestibility of dietary components in a cereal-based pig diet. J. Nutr. 116:242-251.

30.
Grieshop, C. M., D. E. Reese and G. C. Fahey, Jr. 2001. Nonstarch polysaccharides and oligosaccharides in swine nutrition. In: Swine Nutrition (Ed. A. J. Lewis and L. L. Southern). CRC Press, Boca Raton, Florida, USA. pp. 107-130.

31.
Hedemann, M. S., M. Eskildsen, H. N. Laerke, C. Pedersen, J. E. Lindberg, P. Laurinen and K. E. Bach Knudsen. 2006. Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties. J. Anim. Sci. 84:1375-1386.

32.
Heijnen, M.-L. and A. Beynen. 1998. Effect of consumption of uncooked (RS2) and retrograded (RS3) resistant starch on apparent absorption of magnesium, calcium, and phosphorus in pigs. Z. Ernaehrungswiss. 37:13-17. crossref(new window)

33.
Henriksson, A., L. Andre and P. L. Conway. 1995. Distribution of lactobacilli in the porcine gastrointestinal tract. FEMS Microbiol. Ecol. 16:55-60. crossref(new window)

34.
Hill, J. E., S. M. Hemmingsen, B. G. Goldade, T. J. Dumonceaux, J. Klassen, R. T. Zijlstra, S. H. Goh and A. G. van Kessel. 2005. Comparison of ileum microflora of pigs fed corn-, wheat-, or barley-based diets by chaperonin-60 sequencing and quantitative PCR. Appl. Environ. Microbiol. 71:867-875. crossref(new window)

35.
Hogberg, A., J. E. Lindberg, T. Leser and P. Wallgren. 2004. Influence of cereal non-starch polysaccharides on ileo-caecal and rectal microbial populations in growing pigs. Acta Vet. Scand. 45:87-98. crossref(new window)

36.
Huang, R. L., Y. L. Yin, K. P Wang, T. J. Li and J. X. Liu. 2003. Nutritional value of fermented and not fermented material of distiller's grains in pig nutrition. J. Anim. Feed Sci. 12:261-269.

37.
Ide, T., M. Horii, T. Yamamoto and K. Kawashima. 1990. Contrasting effects of water-soluble and water-insoluble dietary fibers on bile acid conjugation and taurine metabolism in the rat. Lipids 25:335-340. crossref(new window)

38.
Jensen, B. B. 2001. Possible ways of modifying type and amount of products from microbial fermentation in the gut. In: Gut environment of pigs (Ed. A. Piva, K. E. Bach Knudsen and J. E. Lindberg). Nottingham University Press, Nottingham, UK. pp. 181-199.

39.
Jensen, B. B. and H. Jorgensen. 1994. Effect of DF on microbial activity and microbial gas production in various regions of the gastrintestinal tract of pigs. Appl. Environ. Microbiol. 60: 1897-1904.

40.
Jensen, N. S. and E. Canale-Parola. 1985. Nutritionally limited pectinolytic bacteria from the human intestine. Appl. Environ. Microbiol. 50:172-173.

41.
Jin, L., L. P. Reynolds, D. A. Redmer, J. S. Caton and J. D. Crenshaw. 1994. Effects of dietary fibre on intestinal growth, cell proliferation, and morphology in growing pigs. J. Anim. Sci. 72:2270-2278.

42.
Johnston, S. L., S. B. Williams, L. L. Southern, T. D. Bidner, L. D. Bunting, J. O. Matthews and B. M. Olcott. 2004. Effect of phytase addition and dietary calcium and phosphorus levels on plasma metabolites and ileal and total-tract nutrient digestibility in pigs. J. Anim. Sci. 82:705-714.

43.
Jongbloed, A. W. 1987. Phosphorus in the feeding of pigs: Effect of diet on the absorption and retention of phosphorus by growing pigs. PhD, University of Lelystad, Lelystad, The Netherlands.

44.
Jorgensen, H., X.-Q. Zhao and B. Eggum 1996. The influence of DF and environmental temperature on the development of the gastrointestinal tract, digestibility, degree of fermentation in the hind-gut and energy metabolism in pigs. Br. J. Nutr. 75:365-378. crossref(new window)

45.
Komisarczuk, S., M. Durand, P. Beaumatin and G. Hannequart. 1987a. Effects of phosphorus deficiency on rumen microbial activity associated with the solid and liquid phases of a fermentor (Rusitec). Repr. Nutr. Dev. 27:907-919. crossref(new window)

46.
Komisarczuk, S., R. J. Merry and A. B. McAllan. 1987b. Effect of different levels of phosphorus on rumen microbial fermentation and synthesis determined using a continuous culture technique. Br. J. Nutr. 57:279-290. crossref(new window)

47.
Komisarczuk, S., G. Gaudet, G. Hannequart, G. Fonty and M. Durand. 1988. Effects of a sub-deficiency in phosphorus on some aspects of cellulolytic activity of Bacteroides succinogenes. Repr. Nutr. Dev. 28:79-80. crossref(new window)

48.
Konstantinov, S. R., A. Awati, H. Smidt, B. A. Williams, A. D. L. Akkermans and W. M. de Vos. 2004. Specific response of a novel and abundant Lactobacillus amylorus-like phylotype to dietary prebiotics in the guts of weaning piglets. Appl. Environ. Microbiol. 70:3821-3830. crossref(new window)

49.
Konstantinov, S. R., E. Poznanski, S. Fuentes, A. D. L. Akkermans, H. Smidt and W. M. de Vos. 2006. Lactobacillus sobrius sp. nov., abundant in the intestine of weaning piglets. Int. J. Syst. Evol. Microbiol. 56:29-32. crossref(new window)

50.
Kornegay, E. T. and R. J. Moore. 1986. Dietary fiber sources may affect mineral use in swine. Feedstuffs 58:36-49.

51.
Kurdi, P., H. W. van Veen, H. Tanaka, I. Mierau, W. N. Konings, G. W. Tannock, F. Tomita and A. Yokota. 2000. Cholic acid is accumulated spontaneously, driven by membrane $\Delta$pH, in many lactobacilli. Appl. Environ. Microbiol. 182:6525-6528.

52.
Larsen, T. and B. Sandstrom. 1993. Effect of dietary calcium level on mineral and trace element utilization from a rapeseed (Brassica napus L.) diet fed to ileum-fistulated pigs. Br. J. Nutr. 69:211-224. crossref(new window)

53.
Lee, S. F., W. Forsberg and L. N. Gibbins. 1985. Cellulolytic activity of Clostridium acetobutylicum. Appl. Environ. Microbiol. 50:220-228.

54.
Legay-Carmier, F. and D. Bauchart. 1989. Distribution of bacteria in the rumen contents of dairy cows given a diet supplement with soya-bean oil. Br. J. Nutr. 61:725-740. crossref(new window)

55.
Lengeler, J. W., G. Drews and H. G. Schlegel. 1999. Biology of the prokaryotes. Thieme, Stuttgart, Germany.

56.
Leser, T. D., R. H. Lindecrona, T. K. Jensen, B. B. Jensen and K. Moller. 2000. Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae. Appl. Environ. Microbiol. 66:3290-3296. crossref(new window)

57.
Leser, T. D., J. Z. Amenuvor, T. K. Jensen, R. H. Lindecrona, M. Boye and K. Moller. 2002. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68:673-690. crossref(new window)

58.
Levrat, M.-A., C. Remesy and C. Demigne. 1991. High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J. Nutr. 121:1730- 1737.

59.
Li, D., X. R. Che, Y. Q. Wang, S. Y. Qiao, W. Johnson and P. Thacker. 1999. The effect of calcium level on microbial phytase activity and nutrient balance in swine. Asian-Aust. J. Anim. Sci. 12:197-202.

60.
Liu, J., D. W. Bollinger, D. R. Ledoux and T. L. Veum. 2000. Effects of dietary calcium:phosphorus ratios on apparent absorption of calcium and phosphorus in the small intestine, cecum, and colon of pigs. J. Anim. Sci. 78:106-109.

61.
Loh, G., M. Eberhard, R. M. Brunner, U. Hennig, S. Kuhla, B. Kleesen and C. C. Metges. 2006. Inulin alters the intestinal microbiota and short-chain fatty acid concentrations in growing pigs regardless of their basal diet. J. Nutr. 136:1198- 1202.

62.
Martin-Orue, S. M., J. Balcells, F. Zakraoui and C. Castrillo. 1998. Quantification and chemical composition of mixed bacteria harvested from solid fractions of rumen digesta: effect of detachment procedure. Anim. Feed Sci. Technol. 71:269-282. crossref(new window)

63.
Matsuura, Y. 1991. Pectic acid degrading enzymes from human faeces. Agric. Biol. Chem. 55:885-886. crossref(new window)

64.
McCarthy, R. E., S. F.Kotarski and A. A. Salyers. 1985. Location and characteristics of enzymes involved in the breakdown of polygalacturonic acid by Bacteroides thetaiotaomicron. J. Bacteriol. 161:493-499.

65.
McDonald, D. E., D. W. Pethick, B. P. Mullan and D. J. Hampson. 2001. Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newlyweaned pigs. Br. J. Nutr. 86:487-498. crossref(new window)

66.
Merry, R. J. and A. B. McAllan. 1983. A comparison of the chemical composition of mixed bacteria harvested from the liquid and solid fraction of rumen bacteria. Br. J. Nutr. 50:701- 709. crossref(new window)

67.
Metzler, B., T. Baumgartel, M. Rodehutscord and R. Mosenthin. 2006. Fermentable carbohydrates affect the chemical composition of the faecal mixed bacterial mass, microbial activity and P metabolism in the large intestine of pigs. In: International Conference on Sustainable Animal Health through Eubiosis - Relevance for Man (Ed. C. Wenk and O. Simon), pp. 27 and CD-Rom, Ascona, Switzerland.

68.
Metzler, B. U. 2007. Effects of fermentable carbohydrates and dietary P supply on bacterial P incorporation, activity and composition. PhD, University of Hohenheim, Stuttgart Germany.

69.
Montagne, L., J. R. Pluske and D. J. Hampson. 2003. A review of interactions between DF and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 108:95-117. crossref(new window)

70.
Morales, J., J. F. Perez, S. M. Martin-Orue, M. Fondevila and J. Gasa. 2002. Large bowel fermentation of maize or sorghumacorn diets fed as a different source of carbohydrates to Landrace and Iberian pigs. Br. J. Nutr. 88:489-497. crossref(new window)

71.
Moore, W. E. C., L. V. H. Moore, E. P. Cato, T. D. Wilkins and E. T. Kornegay. 1987. Effect of high-fiber and high-oil diets on the fecal flora of swine. Appl. Environ. Microbiol. 53:1638- 1644.

72.
Mosenthin, R., W. C. Sauer, H. Henkel, F. Ahrens and C. F. M. de Lange. 1992. Tracer studies of urea kinetics in growing pigs: II. The effect of starch infusion at the distal ileum on urea recycling and bacterial nitrogen excretion. J. Anim. Sci. 70:3467-3472.

73.
Mosenthin, R., W. C. Sauer and F. Ahrens. 1994. Dietary pectin's effect on ileal and fecal amino acid digestibility and exocrine pancreatic secretions in growing pigs. J. Nutr. 124:1222-1229.

74.
Nortey, T. N., J. F. Patience, P. H. Simmins, N. L. Trottier and R. T. Zijlstra. 2007. Effects of individual or combined xylanase and phytase supplementation on energy, amino acid, and phosphorus digestibility and growth performance of grower pigs fed wheat-wheat based diets containing wheat millrun. J. Anim. Sci. 85:1432-1443. crossref(new window)

75.
Ohmiya, K., M. Shimizu, M. Taya and S. Shimizu. 1982. Purification and properties of cellobiosidase from Ruminococcus albus. J. Bacteriol. 150:407-409.

76.
Olano-Martin, E., G. R. Gibson and R. A. Rastall. 2002. Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides. J. Appl. Microbiol. 93:505-511. crossref(new window)

77.
Owusu-Asiedu, A., J. F. Patience, B. Laarveld, A. G. van Kessel, P. H. Simmins and R. T. Zijlstra. 2006. Effects of guar gum and cellulose on digesta passage rate, ileal microbiota, energy and protein digestibility, and performance of grower pigs. J. Anim. Sci. 84:843-852.

78.
Partanen, K., T. Jalava, J. Valaja, S. Perttila, H. Siljander-Rasi and H. Lindeberg. 2001. Effect of dietary carbadox or formic acid and fibre level on ileal and faecal nutrient digestibility and microbial metabolite concentrations in ileal digesta of the pig. Anim. Feed Sci. Technol. 93:137-155. crossref(new window)

79.
Partridge, I. G. 1978a. Studies on digestion and absorption in the intestines of growing pigs. 3. Net movements of mineral nutrients in the digestive tract. Br. J. Nutr. 39:527-537. crossref(new window)

80.
Partridge, I. G. 1978b. Studies on digestion and absorption in the intestines of growing pigs. 4. Effects of dietary cellulose and sodium levels on mineral absorption. Br. J. Nutr. 39:539-545. crossref(new window)

81.
Partridge, I. G., O. Simon and H. Bergner. 1986. The effects of treated straw meal on ileal and faecal digestibility of nutrients in pigs. Arch. Anim. Nutr. 36:351-359. crossref(new window)

82.
Pie, S., A. Awati, S. Vida, I. Falluel, B. A. Williams and I. P. Oswald. 2007. Effects of added fermentable carbohydrates in the diet on intestinal proinflammatory cytokine-specific mRNA content in weaning piglets. J. Anim. Sci. 85:673-683. crossref(new window)

83.
Pryde, S. E., A. J. Richardson, C. S. Stewart and H. J. Flint. 1999. Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and caecal lumen of a pig. Appl. Environ. Microbiol. 65:5372-5377.

84.
Reid, C. A. and K. Hillman. 1999. The effect of retrogradation and amylase/amylopectin ratio on starches and carbohydrates fermentation and microbial populations in the porcine colon. Anim. Sci. 68:503-510.

85.
Remesy, C., M.-A. Levrat, L. Gamet and C. Demigne. 1993. Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. Am. J. Physiol. 264:G855- G862.

86.
Roediger, W. E. W. 1980. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793- 798. crossref(new window)

87.
Ruan, Z., Y.-G. Zahng, Y.-L. Yin, R. L. Huang, S. W. Kim, G. Y. Wu and Z. Y. Deng. 2007. Dietary requirement of dtrue digestible phosphorus and total calcium for growing pigs. Asian-Aust. J. Anim. Sci. 20:1236-1242.

88.
Russell, E. G. 1979. Types and distribution of anaerobic bacteria in the large intestine of pigs. Appl. Environ. Microbiol. 37:187-193.

89.
Sakata, T. and H. Setoyama. 1995. Local stimulatory effect of short-chain fatty acids on the mucus release from the hindgut mucosa of rats (Rattus norvegicus). Comp. Biochem. Physiol. 111:429-432. crossref(new window)

90.
Salanitro, J. P., I. G. Blake and P. A. Muirhead. 1977. Types and distribution of anaerobic bacteria in the large intestine of pigs. Appl. Environ. Microbiol. 37:187-193.

91.
Savage, D. C. 1986. Gastrointestinal microflora in mammalian nutrition. Annu. Rev. Nutr. 6:155-178. crossref(new window)

92.
Schneeman, B. O. 1987. Dietary fiber and gastrointestinal function. Nutr. Rev. 45:129-132. crossref(new window)

93.
Seynaeve, M., G. Janssen, M. Hesta, C. van Nevel and R. O. Wilde. 2000a. Effects of dietary Ca/P ratio, P level and microbial phytase supplementation on nutrient digestibilities in growing pigs: prececal, post-ileal and total tract disappearances of OM, P and Ca. J. Anim. Physiol. Anim. Nutr. 83:36-48. crossref(new window)

94.
Seynaeve, M., G. Janssen, M. Hesta, C. van Nevel and R. O. Wilde. 2000b. Effects of dietary Ca/P ratio, P level and microbial phytase supplementation on nutrient digestibilities in growing pigs: breakdown of phytic acid, partition of P and phytase activity along the intestinal tract. J. Anim. Physiol. Anim. Nutr. 83:193-204. crossref(new window)

95.
Shi, B. M., A. S. Shan and J. M. Tong. 2001. Influence of dietary oligosaccharides on growth performance and intestinal microbial populations of piglets. Asian-Aust. J. Anim. Sci. 14:1747-1751.

96.
Shim, S. B., J. M. A. J. Verdonk, W. F. Pellikaan and M. W. A. Verstegen. 2007. Differences in microbial activities of faeces from weaned and unweaned pigs in relation to in vitro fermentation of different sources of inulin-type oligofructose and pig feed ingredients. Asian-Aust. J. Anim. Sci. 20:1444-1452.

97.
Slominski, B. A., D. Boros, L. D. Campbell, W. Guenter and O. Jones. 2004. Wheat by-products in poultry nutrition. Part I. Chemical and nutritive composition of wheat screenings, bakery by-products and wheat mill run. Can. J. Anim. Sci. 84:421-428. crossref(new window)

98.
Spiehs, M. J., M. H. Whitney and G. C. Shurson. 2002. Nutrient database for distiller's dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. J. Anim. Sci. 80:2639-2645.

99.
Theander, O., P. Aman, E. Westerlund and H. Graham. 1994. Enzymatic/chemical analysis of DF. J. AOAC Int. 77:703-709.