Advanced SearchSearch Tips
Acquisition of Thermotolerance in Transgenic Orchardgrass Plants with DgHSP17.2 Gene
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Acquisition of Thermotolerance in Transgenic Orchardgrass Plants with DgHSP17.2 Gene
Kim, Ki-Yong; Jang, Yo-Soon; Cha, Joon-Yung; Son, Daeyoung; Choi, Gi Jun; Seo, Sung; Lee, Sang Jin;
  PDF(new window)
To develop transgenic orchardgrass (Dactylis glomerata L.) resistant to high temperature, the recombinant DgHSP17.2 gene was introduced into orchardgrass plants using the Agrobacterium-mediated transformation method and expressed constitutively under the control of the CaMV 35S promoter. The results of genomic DNA PCR and Southern analysis showed a DNA band and hybridization signal on agarose gel and X-ray film in transgenic orchardgrass plants harboring the recombinant DgHSP17.2 gene, but a DNA band and hybridization signal were not observed in the wild type and empty vector control plants. The same result was also obtained in RT-PCR and Southern blot analysis, and these transgenic orchardgrass plants did not show any morphological aberration both in the culture bottle and soil mixture. When leaf discs cut from transgenic orchardgrass plants with recombinant DgHsp17.2 gene were exposed to lethal temperature (heat treatment at for 50 min), 60-80% of the leaf discs showed only damage symptoms, but non-transgenic leaf discs showed a lethal condition. These results indicate that the DgHsp17.2 gene may act as a protector from heat stress in plants.
Orchardgrass (Dactylis glomerata L.);Agrobacterium-mediated Transformation;DgHSP17.2 Gene;Thermotolerance;
 Cited by
Cashikar, A. G., M. L Duennwald and S. L. Lindquist. 2005. A chaperone pathway in protein disaggregation: Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J. Biol. Chem. 280:23869-23875. crossref(new window)

Chang, Z., T. P. Primm, J. Jakana, I. H. Lee, I. Serysheva, W. Chiu, H. F. Gilbert and F. A. Quiocho. 1996. Mycobacterium tuberculosis 16-kDa antigen (HSP16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem. 271:7218-7223. crossref(new window)

de Jong, W. W., J. A. Leunissen and C. E. Vooter. 1993. Evolution of the $\alpha$-crystallin/small heat-shock protein family. Mol. Biol. Evol. 10:103-126.

Feder, M. E. and G. E. Hofmann. 1999. Heat-shock proteins, molecular chaperones, and the stress response evolutionary and ecological physiology. Annual Review of Physiology 61:243-282. crossref(new window)

Fink, A. L. 1999. Chaperone-mediated protein folding. Physiol. Rev. 425:425-449.

Haslbeck, M., A. Miess, T. Stromer, S. Walter and J. Buchner. 2005. Disassembling protein aggregates in the yeast cytosol: the cooperation of Hsp26 with Ssa1 and Hsp104. J. Biol. Chem. 280:23861-23868. crossref(new window)

Haslbeck, M., S. Walke, T. Stromer, M. Ehrnsperger, H. E. White, S. Chen, H. R. Saibil and J. Buchner. 1999. Hsp26: a temperature-regulated chaperone. EMBO J. 18:6744-6751. crossref(new window)

Holsters, M., O. D. Wael, A. Depicker, E. Messens, M. V. Montagu and J. Schell. 1978. Transfection and transformation of A.tumefaciens. Mol. Gel. Genet. 163:181-187. crossref(new window)

Horwich, A. L. 2002. Protein aggregation in disease: a role for folding intermediates forming specific multimeric interactions. J. Clin. Invest. 110:1221-1232.

Horwitz, J. 1992. Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89:10449-10453. crossref(new window)

Jakob, U., M. Gaestel, K. Engel and J. Buchner. 1993. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268: 1517-1520.

Jinn, T. L., Y. M. Chen and C. Y. Lin. 1995. Characterization and physiological function of class I low-molecular-mass, heatshock protein complex in soybean. Plant Physiol. 108:693-701.

Kim, K. Y., M. S. Chung and J. Jo. 1997. Acquisition of thermotolerance in the transgenic plants with BcHSP17.6 cDNA. J. Korean Grassl. Sci. 17(4):379-386.

Kim, K. Y., Y. S. Jang, G. J. Choi, Y. W. Rim, G. J. Park, B. H. Lee, D. Son and J. Jo. 2002. Molecular cloning of a cDNA encoding 17.6-kilodalton heat shock protein from Brassica campestris and its expression in E. coli. Korean J. Genetics 24(4):383-388.

Kim, K. Y., Y. S. Jang, B. H. Lee and J. Jo. 1998a. Expression and accumulation of LMW HSPs under various heat shock conditions. J. Korean Grassl. Sci. 18(4):303-310.

Kim, K. Y., Y. W. Rim, K. J. Choi, J. S. Shin, J. G. Kim and J. Jo. 1998b. Rapid regeneration of plants on N6 medium from orchardgrass (Dactylis glomerata L.) calli. J. Korean Grassl. Sci. 18(3):267-272.

Lee, G. J. and E. Vierling. 2000. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol. 122:189-197. crossref(new window)

Lee, H., E. K. Bae, K. Y. Kim, S. Won, M. Chung and J. Jo. 2001. Transformation of orchardgrass (Dactylis glomerata L.) with glutathione reductase gene. J. Korean Grassl. Sci. 21(1):21-26.

Lin, C. Y., J. K. Roberts and J. L. Key. 1984. Acquisition of thermotolerance in soybean seedlings. Plant Physiol. 74:152-160. crossref(new window)

Lindquist, S. and G. Kim. 1996. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc. Natl. Acad. Sci. USA 93:5301-5306. crossref(new window)

McGookin, R. 1984. RNA extraction by the guanidine thiocyanate procedure (Ed. J. M. Walker), Methods in Molecular Biology, Vol. 2, Humana Press, New Jersey, pp. 113-116.

Mogk, A., E. Deuerling, S. Vorderwulbecke, E. Vierling and B. Bukau. 2003a. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol. 50:585-595. crossref(new window)

Mogk, A., C. Schlieker, K. L. Friedrich, H. Schonfeld, E. Vierling and B. Bukau. 2003b. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J. Biol. Chem. 278:31033-31042. crossref(new window)

Murray, M. G. and W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8:4321-4325. crossref(new window)

Narberhaus, F. 2002. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 66:64-93. crossref(new window)

Lee, S. H., D. G. Lee, H. S. Woo and B. H. Lee. 2004. Development of tall fescue plants from mature seed-derived callus via Agrobacterium-mediated transformation. Asian-Aust. J. Anim. Sci. 17:1390-1394.

Thomas, J. G. and F. Baneyx. 1998. Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG in vivo. J. Bacteriol. 180:5165-5172.

Thomas, X., L. Campos, Q. H. Le and D. Guyotat. 2005. Heat shock proteins and acute leukemias. Hematology 10(3):225-235. crossref(new window)

van Montfort, R., C. Slingsby and E. Vierling. 2002. Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv. Protein Chem. 59:105-156.

Weibezahn, J., P. Tessarz, C. Schlieker, R. Zahn, Z. Maglica, S. Lee, H. Zentgraf, E. U. Weber-Ban, D. A. Dougan, F. T. F. Tsai, A. Mogk and B. Bukau. 2004. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119:653-665. crossref(new window)