Advanced SearchSearch Tips
Recent Progress in Biotechnology-based Gene Manipulating Systems to Produce Knock-In/Out Mouse Models
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Recent Progress in Biotechnology-based Gene Manipulating Systems to Produce Knock-In/Out Mouse Models
Lee, Woon Kyu; Park, Joong Jean; Cha, Seok Ho; Yun, Cheol-Heui;
  PDF(new window)
Gene-manipulated mice were discovered for the first time about a quarter century ago. Since then, numerous sophisticated technologies have been developed and applied to answer key questions about the fundamental roles of the genes of interest. Functional genomics can be characterized into gain-of-function and loss-of-function, which are called transgenic and knock-out studies, respectively. To make transgenic mice, the most widely used technique is the microinjection of transgene-containing vectors into the embryonic pronucleus. However, there are critical drawbacks: namely position effects, integration of unknown copies of a foreign gene, and instability of the foreign DNA within the host genome. To overcome these problems, the ROSA26 locus was used for the knock-in site of a transgene. Usage of this locus is discussed for the gain of function study as well as for several brilliant approaches such as conditional/inducible transgenic system, reproducible/inducible knockdown system, specific cell ablation by Cre-mediated expression of DTA, Cre-ERTM mice as a useful tool for temporal gene regulation, MORE mice as a germ line delete and site specific recombinase system. Techniques to make null mutant mice include complicated steps: vector design and construction, colony selection of embryonic stem (ES) cells, production of chimera mice, confirmation of germ line transmission, and so forth. It is tedious and labor intensive work and difficult to approach. Thus, it is not readily accessible by most researchers. In order to overcome such limitations, technical breakthroughs such as reporter knock-in and gene knock-out system, production of homozygous mutant ES cells from a single targeting vector, and production of mutant mice from tetraploid embryos are developed. With these upcoming progresses, it is important to consider how we could develop these systems further and expand to other animal models such as pigs and monkeys that have more physiological similarities to humans.
Transgenic;Knock In/Out;ROSA26;Tetraploid;ES Cells;Gene Manipulation;
 Cited by
Austin, C. P., J. F. Battey, A. Bradley, M. Bucan, M. Capecchi and F. S. Collins. 2004. The knockout mouse project. Nat. Genet. 36:921-924. crossref(new window)

Belteki, G., J. Haigh, N. Kabacs, K. Haigh, K. Sison, F. Costantini, J. Whitsett, S. E. Quaggin and A. Nagy. 2005. Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res. 33:e51. crossref(new window)

Belteki, G., M. Gertsenstein, D. W. Ow and A. Nagy. 2003. Sitespecific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat. Biotech. 21:321-324. crossref(new window)

Branda, C. S. and S. M. Dymecki. 2004. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6:7-28. crossref(new window)

Capecchi, M. R. 2005. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6:507-512.

Chrenek, P., L. Chrastinova, K. Kirchnerova, A. V. Makarevich and V. Foltys. 2007. The yield and composition of milk from transgenic rabbits. Asian-Aust. J. Anim. Sci. 20:482-486.

Collins, F. S., J. Rossant and W. Wurst. 2007. A Mouse for all reasons. Cell 128:9-13. crossref(new window)

Deng, C., M. Bedford, C. Li, X. Xu, X. Yang, J. Dunmore and P. Leder. 1997. Fibroblast growth factor receptor-1 (FGFR-1) is essential for normal neural tube and limb development. Dev. Biol. 186:42-54.

Evans, M. J. and M. H. Kaufman. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156. crossref(new window)

George, S. H. L., M. Gertsenstein, K. Vintersten, E. Korets-Smith, J. Murphy, M. E. Stevens, J. J. Haigh and A. Nagy. 2007. Developmental and adult phenotyping directly from mutant embryonic stem cells. Proc. Natl. Acad. Sci. USA 104:4455-4460. crossref(new window)

Gorivodsky, M. and P. Lonai. 2003. Novel roles of Fgfr2 in AER differentiation and positioning of the dorsoventral limb interface. Development 130:5471-5479. crossref(new window)

Grippo, P. J., P. S. Nowlin, R. D. Cassaday and E. P. Sandgren. 2002. Cell-specific transgene expression from a widely transcribed promoter using Cre/lox in mice. Genesis 32:277-286. crossref(new window)

Gu, X., C. Li, W. Wei, V. Lo, S. Gong, S-H. Li, T. Iwasato, S. Itohara, X-J. Li, I. Mody, N. Heintz and X. W. Yang. 2005. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntington contribute to cortical pathogenesis in HD mice. Neuron 46:433-444. crossref(new window)

Hayashi, S. and A. P. McMahon. 2002. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244:305-318. crossref(new window)

Hitz, C., W. Wurst and R. Kuhn. 2007. Conditional brain-specific knockdown of MAPK using Cre/loxP regulated RNA interference. Nucleic Acids Res. 35:e90. crossref(new window)

Hudziak, R. M., F. A. Laski, U. L. RajBhandary, P. A. Sharp and M. R. Capecchi. 1982. Establishment of mammalian cell lines containing multiple nonsense mutations and functional suppressor tRNA genes. Cell 31:137-146. crossref(new window)

Hwang, S., E. J. Choi, S. You, Y. J. Choi, K. S. Min and J. T. Yoon. 2006. Development of bovine nuclear transfer embryos using life-span extended donor cells transfected with foreign gene. Asian-Aust. J. Anim. Sci. 19:1574-1579.

Ivanova, A., M. Signore, N. Caro, N. D. E. Greene, A. J. Copp and J. P. Martinez-Barbera. 2005. In vivo genetic ablation by Cremediated expression of dphtheria toxin fragment A. Genesis 43:129-135. crossref(new window)

Jeong, J., J. Mao, T. Tenzen, A. H. Kottmann and A. P. McMahon. 2006. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordial. Genes Dev. 18:937-951. crossref(new window)

Kisseberth, W. C., N. T. Brettingen, J. K. Lohse and E. P. Sandgren. 1999. Ubiquitous expression of marker transgenes in mice and rats. Dev. Biol. 214:128-138. crossref(new window)

Koller, B. H. and O. Smithies. 1989. Inactivating the beta 2-microglobulin locus in mouse embryonic stem cells by homologous recombination. Proc. Natl. Acad. Sci. USA. 86:8932-8935. crossref(new window)

Lakso, M., J. G. Pichel, J. R. Gorman, B. Sauer, Y. Okamoto, E. Lee, F. W. Alt and H. Westphal. 1996. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA. 93:5860-5865. crossref(new window)

Mao, A., B. Barrow, J. McMahon, J. Vaughan and A. P. McMahon. 2005. An ES cell system for rapid, spatial and temporal analysis of gene function in vitro and in vivo. Nucleic Acids Res. 33:e155. crossref(new window)

Mortensen, R. M., D. A. Conner, S. Chao, A. A. T. Geisterfer-Lowrance and J. G. Seidman. 1992. Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12:2391-2395.

Murtaugh, L. C., B. Z. Stanger, K. M. Kwan and D. A. Melton. 2003. Notch signaling controls multiple steps of pancreatin differentiation. Proc. Natl. Acad. Sci. USA. 100:14920-14925. crossref(new window)

O'Gorman, S., D. T. Fox and G. M. Wahl. 1991. Recombinasemediated gene activation and site-specific integration in mammalian cells. Sci. 251:1351-1355. crossref(new window)

Odorfer, Ko. I., N. J. Unger, K. Weber, E. P. Sandgren and R. G. Erben. 2007. Marker tolerant, immunocompetent animal as a new tool for regenerative medicine and long-term cell tracking. BMC Biotech. 7:30. crossref(new window)

Raymond, C. S. and P. Soriano. 2007. High-efficiency FLP and $\phi$C31 site-specific recombination in mammalian cells. PLoS ONE 2:e162. crossref(new window)

Riele, T., E. R. Maandag, A. Clarke, M. Hooper and A. Berns. 1990. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348:649-651. crossref(new window)

Sauer, B. and N. Henderson. 1988. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA. 85:5166-5170. crossref(new window)

Snow, M. H. 1973. Tetraploid mouse embryos produced by cytochalasin B during cleavage. Nature 244:513-515. crossref(new window)

Snow, M. H. 1975. Embryonic development of tetraploid mice during the second half of gestation. J. Embryol. Exp. Morph. 35:81-86.

Soriano, P. 1999. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21:70-71. crossref(new window)

Srinivas, S., T. Watanabe, C-S. Lin, C. M. William, Y. Tanabe, T. M. Jessell and F. Costantini. 2001. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1:4. crossref(new window)

Tallquist, M. D. and P. Soriano. 2000. Epiblast-restricted Cre expression in MORE mice: A tool to distinguish embryonic vs. extra-embryonic gene function. Genesis 26:113-115. crossref(new window)

Tarkowski, A. K., A. Witkowska and J. Opas. 1977. Development of cytochalasin B-induced tetraploid and diploid/tetraploid mosaic mouse embryos. J. Embryol. Exp. Morph. 41:47-64.

Wang, W., M. Warren and A. Bradley. 2007. Induced mitotic recombination of p53 in vivo. Proc. Natl. Acad. Sci. USA. 104:4501-4505. crossref(new window)

Wu, S., G. Ying, Q. Wu and M. R. Capecchi. 2007. Toward simpler and faster genome-wide mutagenesis in mice. Nat. Genet. 39:922-930. crossref(new window)

Yu, H-M., B. Liu, S-Y. Chiu, F. Costantini and W. Hsu. 2005. Development of a unique system for spatiotemporal and lineage-specific gene expression in mice. Proc. Natl. Acad. Sci. USA. 102:8615-8620. crossref(new window)

Yu, J. and A. P. McMahon. 2006. Reproducible and inducible knockdown of gene expression in mice. Genesis 44:252-261. crossref(new window)

Zambrowicz, B. P., A. Imanoto, S. Fiering, L. A. Herzenberg, W. G. Kerr and P. Soriano. 1997. Disruption of overlapping transcripts in the ROSA $\beta$geo26 gene trap strain leads to widespread expression of $\beta$-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. USA. 94:3789-3794. crossref(new window)