Advanced SearchSearch Tips
Development of Probiotic Candies with Optimal Viability by Using Response Surface Methodology and Sequential Quadratic Programming
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Development of Probiotic Candies with Optimal Viability by Using Response Surface Methodology and Sequential Quadratic Programming
Chen, Kun-Nan; Chen, Ming-Ju; Shiu, Jia-Shian;
  PDF(new window)
The objective of this research was to create a new probiotic candy with good flavor and healthy benefits by using the response surface method and a sequential quadratic programming technique. The endpoint was to increase the varieties of dairy products and enhance their market values. In this study, milk was mixed with yogurt cultures (Lactobacillus bulgaricus, Streptococcus thermophilus) and probiotics (L. paracasei, Bifidobacterium longum) and incubated at for 20 h. The samples were blended with lyoprotectants (galactose, skim milk powder and sucrose), freeze dried and then mixed with sweeteners (lactose and xylitol) to improve the texture for forming tablets. The processing conditions were optimized in two steps: the first step constructed a surface model using response surface methodology; the second step optimized the model with a sequential quadratic programming procedure. Results indicated that skim milk inoculated with L. delbrueckii subsp. Bulgaricus, S. thermophilus, L. paracasei subsp. paracasei and B. longum and blended with 6.9% of galactose, 7.0% of sucrose and 8.0% of skim milk powder would produce a new probiotic candy with the highest viability of probiotics and good flavor. A relatively higher survival of probiotics can be achieved by placing the probiotic candy product in a glass bottle with deoxidant and desiccant at . These probiotic counts remained at 106-108 CFU/g after being stored for two months.
Probiotics;Lyoprotectants;Optimization;Response Surface Methodology;Sequential Quadratic Programming;
 Cited by
Abadias, M., A. Benabarre, N. Teixido, J. Usall and I. Vi. 2001. Effect of freeze drying and protectants on viability of the biocontrol yeast Candida sake. Int. J. Food Microbiol. 65:173-182. crossref(new window)

Bertocchia, P., E. Antoniellaa, L. Balboa, S. Alimontia and A. Memolib. 2005. Diclofenac sodium multisource prolonged release tablets-a comparative study on the dissolution profiles. Journal of Pharmaceutical and Biomedical Analysis 37:679-685. crossref(new window)

Box, G. E. P. and E. W. Behnkin. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2:455-475. crossref(new window)

Carvalho, A. S., J. Silva, P. Ho, P. Teixerira, F. X. Malcata and P. Gibbs. 2004. Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. Biotechnol. Prog. 20:248-254. crossref(new window)

Carvalho, A. S., J. Silva, P. Ho, P. Teixerira, F. X. Malcata and P. Gibbs. 2002. Effect of additives on survival of freeze-dried Lactobacillus plantarum and Lactobacillus rhamnosus during storage. Biotechnol. Lett. 24:1587-1591. crossref(new window)

Champagne, C. P., F. Mondou, Y. Raymond and D. Roy. 1996. Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Research International 29: 555-562. crossref(new window)

Champagne, C. P., H. Detournay and M. J. Hardy. 1991. Effect of medium on growth and subsequent survival of Lactobacillus delbrueckii subsp. bulgaricus to freeze-drying. J. Ind. Microbiol. 7:147-152. crossref(new window)

Chen, H. C., C. W. Lin and M. J. Chen. 2006. The effects of freeze drying and rehydration on survival of microorganisms in kefir. Asian-Aust. J. Anim. Sci. 19(1):126-130

Chen, K. N., M. J. Chen and C. W. Lin. 2006. Optimal combination of the encapsulating materials for probiotic microcapsules and its experimental verification. J. Food Engine. 76:313-320. crossref(new window)

Chen, M. J., K. N. Chen and C. W. Lin. 2006. Development and verification of an optimum composition model for a synbiotic fermented milk using sequential quadratic programming techniques. Asian-Aust. J. Anim. Sci. 19(10):1490-1495.

Chen, K. N., M. J. Chen and C. W. Lin. 2005. Optimization of Incorporated Prebiotics as Coating Materials for Probiotic Microencapsulation. J. Food Sci. 70(5):260-267. crossref(new window)

Chen, K. N., M. J. Chen and C. W. Lin. 2004. Optimization of the viability of probiotics in a fermented milk drink by the response surface model. Asian-Aust. J. Anim. Sci 17:705-711.

Conrad, P. B., D. P. Miller, P. R. Cielenski and J. J. De Pablo. 2000. Stabilization and Preservation of Lactobacillus acidophilus in saccharide matrices. Cryobiol. 41:17-24. crossref(new window)

Font de Valdez, G., G. De Giori, A. P. de Ruiz Holgado and G. Oliver. 1983. Protective effect of adonitol on lactic acid bacteria subjected to freeze-drying. Appl. Environ. Microbiol. 45:302-304.

Gilliland, S. E. 1989. Acidophilus milk products: A review of potential benefits to consumers. J. Dairy Sci. 72:2483-2494. crossref(new window)

Haiao, H. C., W. C. Lian and C. C. Chou. 2002. Viability of various microencapsulated bifidobacteria during storage. Xth International Congress of Bactreriology and Applied Microbiology Microbial World, July27-Aug 1, 2002. Paris, France.

Ishibashi, N. and S. Shimamura. 1993. Bifidobacteria: research and development. Japan Food Technol. 47:126-134.

Kets, E. P. W., P. J. Tenuissen and J. A. M. de Bont. 1996. Effect of compatible solutes on survival of lactic acid bacteria subjected to drying. Applied and Environmental Microbiol. 62:259-291.

Kurman, J. A. and J. L. Rasic. 1991. The health potential of products containing bifidobacteria. In: Therapeutic properties of fermented milk (Ed. R. K. Robinson). 115-117. London: Elsevier Application Food Science Series.

Lapierre, L., P. Unde and L. J. Cox. 1992. Lithium chloridesodium propionate agar for the enumeration of bifidobacteria in fermented dairy products. J. Dairy Sci. 75:1192-1196. crossref(new window)

Lee, K. and T. Heo. 2000. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl. Environ. Microbiol. 66(2):868-873.

Leslie, S. B., E. Israeli, B. Llighthart, J. H. Crowe and L. M. Crowe. 1995. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 61:3592-3597.

Linders, L. J. M., G. I. W. de Jong, G. Meerdink and K. van't Riet. 1997. Carbohydrates and the dehydration inactivation of Lactobacillus plantarum: the role of moisture distribution and water activity. J. Food Eng. 31:237-250. crossref(new window)

Lodato, P., M. Segovia de Huergo and M. P. Buera. 1999. Viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices. Appl. Microbiol. Biotechnol. 52:215-220. crossref(new window)

Mattila-Sandholm, T., P. Myllarinen, R. Crittenden, G. Mogensen, R. Fonden and M. Saarela. 2002. Technological challenges for future probiotic foods. Int Dairy J. 12:173-182. crossref(new window)

Rawlins, E. A. 1977. Bentley's Textbook of Pharmaceutics, 8th edn. 1977. p. 663

Robinson, R. K. 1987. Survival of Lactobacillus acidophilus in fermented products. Suid Afrikaans Tydskrif Vir Suiwelunde 19(1):25-27.

Weng, W., W. Liu and W. Lin. 2001. Studies on the optimum models of the dairy product Kou Woan Lao using response surface methodology. Asian-Aust. J. Anim. Sci. 14:1470-1476.

Zayed, G. and Y. H. Roos. 2004. Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Precess Biochem. 39:1081-1086. crossref(new window)