Advanced SearchSearch Tips
Effects of Dietary Inclusion of Palm Kernel Cake and Palm Oil, and Enzyme Supplementation on Performance of Laying Hens
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Dietary Inclusion of Palm Kernel Cake and Palm Oil, and Enzyme Supplementation on Performance of Laying Hens
Chong, C.H.; Zulkifli, I.; Blair, R.;
  PDF(new window)
A total of 392 twenty eight week-old laying hens was used to study the effects of dietary inclusion of solvent-extracted palm kernel cake (PKC) (0%, 12.5% and 25%) and enzyme (mixture of mannanase, -galactosidase and protease) supplementation (0 kg/t, 1 kg/t and 2 kg/t) on the performance of laying hens. The levels of PKC did not significantly influence nitrogen corrected true metabolizable energy (TMEn) of the diets. Enzyme-supplemented PKC had significantly higher AME and TMEn values than PKC diets with no enzyme supplementation. Dietary inclusion of 12.5% and 25% PKC in the diets of laying hens did not adversely affect mean egg production or daily egg mass. However, layers consumed significantly more PKC-based diets and had significantly poorer feed conversion ratios (FCR) than controls. However, the feed intake and FCR of hens provided the 12.5% PKC-based diets with enzyme supplementation at 1 kg/t did not differ from the controls. Dietary inclusion of PKC or enzyme did not affect eggshell quality, but egg yolk colour was significantly paler when layers were fed the 25% PKC diet.
Palm Kernel Cake;Enzyme;Laying Hens;
 Cited by
Effect of Dietary β-Mannanase Supplementation and Palm Kernel Meal Inclusion on Laying Performance and Egg Quality in 73 Weeks Old Hens,;;;;;

Journal of Animal Science and Technology, 2013. vol.55. 2, pp.115-122 crossref(new window)
Effect of dietary supplementation of tapioca on growth performance and meat quality in pigs,;;;;;;;

농업과학연구, 2015. vol.42. 4, pp.347-354 crossref(new window)
Feeding native laying hens diets containing palm kernel meal with or without enzyme supplementations: 1. Feed conversion ratio and egg production, The Journal of Applied Poultry Research, 2011, 20, 1, 40  crossref(new windwow)
Feeding native laying hens diets containing palm kernel meal with or without enzyme supplementations. 2. Excreta nitrogen, ammonia, and microbial counts, The Journal of Applied Poultry Research, 2013, 22, 2, 269  crossref(new windwow)
Biodegradation of Palm Kernel Cake by Cellulolytic and Hemicellulolytic Bacterial Cultures through Solid State Fermentation, The Scientific World Journal, 2014, 2014, 1537-744X, 1  crossref(new windwow)
The effect of a diet supplemented with sea-buckthorn pomace on the colour and viscosity of the egg yolk, Acta Veterinaria Brno, 2017, 86, 3, 303  crossref(new windwow)
Alimon, A. R. and M. Hair-Bejo. 1995. Feeding systems based on oil palm by-products in Malaysia. In: Proceedings of the First Symposium on the Intergration of Livestock to Oil palm production. Kuala Lumpur, Malaysia, pp. 105-113.

Allen, V. M., F. Fernandez and M. H. Hinton. 1997. Evaluation of the influence of supplementing the diet with mannose or palm kernel meal on salmonella colonisation in poultry. Br. Poult. Sci. 38:485-488. crossref(new window)

Cheville, N. F. 1979. Environmental factors affecting the immune response of birds-a review. Avian Dis. 23:308-314. crossref(new window)

Chong, C. H. 1999. Improving utilization of poultry feedstuffs with supplemental amino acids and enzymes. Ph. D. Thesis. The University of British Columbia, Vancouver, Canada.

Daud, M., J. N. Samad and S. Rasool. 1997. Specific commercial enzymes for nutritive value improvement of palm kernel cake for poultry diets. In: Proceedings of the 19th MSAP Annual Conference. Johor Bahru, Johor, Malaysia. pp. 137-138.

Dusterhorft, E. M., A. W. Bonte and A. G. J. Voragen. 1993b. Solubalisation of non-starch polysaccharides form oil-seed meals by polysaccharides-degrading enzymes. J. Sci. Agric. 63:211-220. crossref(new window)

Dusterhorft, E. M., A. W. Bonte and A. G. J. Voragen. 1993c. The role of fungal polysaccharidases in the hydrolysis of cell wall materials from sunflower and palm-kernel meals. Wld. J. Microbiol. Biotechnol. 9:544-554. crossref(new window)

Dusterhorft, E. M., F. M. Engels and A. G. J. Voragen. 1993a. Parameters affecting the enzymic hydrolysis of oil seed meals, lignocellulosic by-products of the food industry. Bioresource Technol. 44:39-46. crossref(new window)

Edmonds, M. S., C. M. Parsons and D. H. Baker. 1985. Limiting amino acids in low-protein corn-soybean meal diets fed to growing chicks. Poult. Sci. 64:1519-1526.

Goh, S. H., Y. M. Choo and A. S. H. Ong. 1985. Minor constituents of palm oil. J. Am. Oil Chem. Soc. 62:237-240. crossref(new window)

Hinton, A., D. E. Corrier, G. E. Spates, J. O. Norman, R. L. Ziprin, R. C. Beier and J. R. Deloach. 1990. Biological control of Salmonella typhimurium colonization in young chickens. Avian Dis. 34:626-633. crossref(new window)

Labier, M. and B. Leclercq. 1994. Nutrition and feeding of poultry. Nottingham University Press, Loughborough, Leicestershire, England.

Longe, O. G. 1984. Effects of increasing the fibre content of a layer diet. Br. Poult. Sci. 25:187-193. crossref(new window)

Mustafa, M. F., A. R. Alimon, M. W. Zahari, I. Idris and M. Hair Bejo. 2004. Nutrient digestibility of palm kernel cake for Muscovy ducks. Asian-Aust. J. Anim. Sci. 17:514-517.

Ngopayou Ngou, J. D. 1984. Nutritional value of palm kernel cake in broiler diets. Poult. Sci. 63 (Suppl. 1):155-156 (Abstr).

Nwe Nwe Htin, I. Zulkifli, A. R. Alimon, T. C. Loh and M. Hair-Bejo. 2007. Effects of source of dietary fat on broiler chickens exposed to high temperature stress. Arch. Geflugelk. 71:74-80.

Nwokolo, E. N., D. D. Bragg and W. D. Kitts. 1976. The availability of amino acids from palm kernel, soybean, cotton seed and rapeseed meal for the growing chick. Poult. Sci. 55:2300-2304.

Onwudike, O. C. 1986. Palm kernel as feed for poultry. 1. Composition of palm kernel meal and availability of its amino acids to chicks. Anim. Feed Sci. Technol. 16:179-186. crossref(new window)

Onwudike, O. C. 1988. Palm kernel as a feed for poultry. Use of palm kernel meal by laying birds. Anim. Feed Sci. Technol. 20: 279-286. crossref(new window)

Oyofo, B. A., J. R. Deloach, D. E. Corrier, J. O. Norman, R. L. Ziprin and H. H. Mollenhauser. 1989. Effects of carbohydrates on Salmonella typhimurium colonization in broiler chickens. Avian Dis. 33:531-534. crossref(new window)

Panigrahi, S. and B. S. Waite. 1998. Use of rations up to forty per cent palm kernel meal for egg production. Br. Poult. Sci. 39 (Suppl.):S37-S38. crossref(new window)

Parsons, C. M., M. S. Edmonds and D. H. Baker. 1984. Influence of dietary electrolyte balance, energy, and amino acid supplementation on the Monensin response in chicks fed diets varying in protein content. Poult. Sci. 63:2438-2443.

Saricicek, B. Z., U. Kihc and A. V. Garipoglu. 2005. Replacing soybean meal (SBM) by canola meal (CM): the ffects of multienzyme and phytase supplmenttaion on the performance of growing and laying quails. Asian-Aust. J. Anim. Sci. 18:1457-1463.

SAS Institute, 1996. $SAS^{(R)}$ User's Guide: Statistics. Version 6 Edn. SAS Institute Inc. Cary, NC.

Sambanthamurthi, R., K. Sundram and Yew-Ai Tan. 2000. Chemistry and biochemistry of palm oil. Prog. Lipid Res. 39:507-558. crossref(new window)

Sibbald, I. R. 1986. The T. M. E. system of feed evaluation: methodology, feed composition data and bibliography. Tech. Bull. 1986-4E, Res. Branch, Agricultural Canada, Ottawa, Ontario, Canada.

Titus, H. W., A. L. Mehring, Jr., D. Johnson, Jr., L. L. Nesbit and T. Tomas. 1959. An evaluation of MCF (micro-cel-fat), a new type of fat product. Poult. Sci. 38:1114-1119.

Yeong, S. W. and T. H. Mukerjee. 1983. The effects of palm oil supplementation in palm-kernel cake-based diets on the performance of broiler chickens. MARDI Res. Bull. 11:378-384.

Zulkifli, I., J. Ginsos, P. K. Liew and J. Gilbert. 2003. Growth performance and Newcastle disease antibody titres of broiler chickens fed palm-based diets and their response to heat stress during fasting. Arch. Geflugelk. 67:125-130.

Zulkifli, I., Nwe Nwe Htin, A. R. Alimon, T. C. Loh and M. Hair- Bejo. 2007. Dietary selection of fat by heat-stressed broiler chickens. Asian-Aust. J. Anim. Sci. 20:245-251.