JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Comparison of Genetic Parameter Estimates of Total Sperm Cells of Boars between Random Regression and Multiple Trait Animal Models
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Genetic Parameter Estimates of Total Sperm Cells of Boars between Random Regression and Multiple Trait Animal Models
Oh, S.-H.; See, M.T.;
  PDF(new window)
 Abstract
The objective of this study was to compare random regression model and multiple trait animal model estimates of the (co) variance of total sperm cells over the active lifetime of AI boars. Data were provided by Smithfield Premium Genetics (Rose Hill, NC). Total number of records and animals for the random regression model were 19,629 and 1,736, respectively. Data for multiple trait animal model analyses were edited to include only records produced at 9, 12, 15, 18, 21, 24, and 27 months of age. For the multiple trait method estimates of genetic and residual variance for total sperm cells were heterogeneous among age classifications. When comparing multiple trait method to random regression, heritability estimates were similar except for total sperm cells at 24 months of age. The multiple trait method also resulted in higher estimates of heritability of total sperm cells at every age when compared to random regression results. Random regression analysis provided more detail with regard to changes of variance components with age. Random regression methods are the most appropriate to analyze semen traits as they are longitudinal data measured over the lifetime of boars.
 Keywords
Genetic Correlation;Boar;Semen;Random Regression Model;Multiple Trait Animal Model;
 Language
English
 Cited by
1.
Estimation of Covariance Functions for Growth of Angora Goats,;;;

아세아태평양축산학회지, 2009. vol.22. 7, pp.931-936 crossref(new window)
 References
1.
Boldman, K. G., L. A. Kriese, L. D. Van Vleck, C. P. Van Tassell and S. D. Kachman. 1995. A Manual for Use of MTDFREML. A set of programs to obtain estimates of variances and covariances (Draft). U.S. Department of Agriculture, Agricultural Research Service.

2.
Brandt, H. and G. Grandjot. 1998. Genetic and environmental effects on male fertility of AI boars. Proc. 6th World Congr. Genet. Appl. Livest. Prod. 23:527-530.

3.
Du Mesnil du Buisson, F., M. Paquignon and M. Courot. 1978. Boar sperm production: use in artificial insemination - a review. Livest. Prod. Sci. 5:293-302. crossref(new window)

4.
Henderson, C. R. 1984. Applications of linear models in animal breeding. Univ. of Guelph, Guelph, Canada.

5.
Huang, Y. T. and R. K. Johnson. 1996. Effect of selection for size of testes in boars on semen and testis traits. J. Anim. Sci. 74:750-760.

6.
Huisman, A. E., R. F. Veerkamp and J. A. M. van Arendonk. 2002. Genetic parameters for various random regression models to describe the weight data of pigs. J. Anim. Sci. 80:575-582.

7.
Masek, N., J. Kuciel, J. Masek and L. Maca. 1977. Genetical analysis of indicators for evaluating boar ejaculates. Acta Universitatis Agriculturae, Facultas Agronomica, Brno. 25:133-139.

8.
Meyer, K. 1998. Modeling 'repeated' records: covariance functions and random regression models to analyse animal breeding data. 6th World Congr. Genet. Appl. Livest. Prod. 25:517-520.

9.
Meyer, K. 2000. Random regressions to model phenotypic variation in monthly weights of Australian beef cows. Livest. Prod. Sci. 65:19-38. crossref(new window)

10.
Meyer, K. 2001. Estimates of direct and maternal covariance functions for growth of Australian beef calves from birth to weaning. Genet. Sel. Evol. 33:487-514. crossref(new window)

11.
Meyer, K. and W. G. Hill. 1997. Estimation of genetic and phenotypic covariance functions for longitudinal or 'repeated' records by restricted maximum likelihood. Livest. Prod. Sci. 47:185-200. crossref(new window)

12.
Morant, S. V. and A. Gnanasakthy. 1989. A new approach to the mathematical formulation of lactation curves. Anim. Produc. 49:151-162. crossref(new window)

13.
Oh, S.-H., M. T. See, T. E. Long and J. M. Galvin. 2006. Genetic parameters for various random regression models to describe total sperm cells per ejaculate over the reproductive lifetime of boars. J. Anim. Sci. 84:538-545.

14.
Olori, V. E., W. G. Hill, B. J. McGuirk and S. Brotherstone. 1999. Estimating variance components for test day milk records by restricted maximum likelihood with a random regression animal model. Livest. Prod. Sci. 61:53-63. crossref(new window)

15.
Strabel, T. and I. Misztal. 1999. Genetic parameters for first and second lactation milk yields of Polish Black and White Cattle with random regression test-day models. J. Dairy Sci. 82:2805-2810. crossref(new window)

16.
Reents, R., J. C. M. Dekkers and L. R. Schaeffer. 1995. Genetic evaluation for somatic cell score with a test day model for multiple lactations. J. Dairy Sci. 78:2858-2870. crossref(new window)

17.
Van der Werf, J. H. J., M. E. Goddard and K. Meyer. 1998. The use of covariance functions and random regressions for genetic evaluation of milk production based on test day records. J. Dairy Sci. 81:3300-3308. crossref(new window)