JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of Supplementary Threonine, Canola Oil or Enzyme on Nutrient Digestibility, Performance and Carcass Traits of Growing-finishing Pigs Fed Diets Containing Wheat Distillers Grains with Solubles
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Supplementary Threonine, Canola Oil or Enzyme on Nutrient Digestibility, Performance and Carcass Traits of Growing-finishing Pigs Fed Diets Containing Wheat Distillers Grains with Solubles
Thacker, P.A.;
  PDF(new window)
 Abstract
This trial was conducted to determine the effects of various feed additives on nutrient digestibility, performance and carcass traits of growing-finishing pigs fed diets containing wheat distiller' grains with solubles (WDGS). Seventy-two, individually fed pigs (19.72.6 kg), were assigned to one of six dietary treatments in a 62 (treatmentsex) factorial design (N = 12). The control diet was based on wheat and soybean meal while the five experimental diets contained 20% WDGS during the growing period and 12% WDGS during the finishing period. One 20% WDGS diet was unsupplemented while the remaining diets were supplemented with either 0.1% threonine, 5% canola oil, 0.2% enzyme (0.1% Endofeed W containing 1,250 units/g of xylanase and 385 units/g of -glucanase and 0.1% Vegpro containing 7,700 HUT/g protease and 75 CMC/g cellulase), or a combination of the three additives at the same levels as those fed separately. The digestibility of dry matter, crude protein and energy were all significantly higher in the control diet than the unsupplemented diet containing 20% WDGS. None of the feed additives improved nutrient digestibility. In addition, none of the additives had any significant effect on gain or feed intake during the growing (19.7 to 43.6) or finishing (43.6 to 114.3 kg) periods or overall (19.7 to 114.3 kg). During the growing period, feed conversion was significantly improved for pigs fed the combination of additives compared with the unsupplemented WDGS diet. During the finishing period and overall, feed conversion was significantly improved for pigs fed 5% canola oil alone or in combination with the other additives. None of the supplements had any effect on carcass traits. These results indicate that WDGS can be successfully used as a partial replacement for soybean meal in diets fed to growingfinishing pigs. However, due to its low energy content, there may be some merit in including high energy ingredients such as canola oil when diets containing WDGS are fed.
 Keywords
Pigs;Digestibility;Performance;Carcass;Wheat Distillers Grains with Solubles;
 Language
English
 Cited by
 References
1.
Azain, M. J. 2001. Fat in swine nutrition. In: Swine nutrition (Ed A. J. Lewis and L. L. Southern). CRC Press, Boca Raton, Florida pp. 95-105

2.
Association of Official Analytical Chemists. 1990. Official Methods of Analysis, 15th edn, AOAC, Washington, DC

3.
Barrera, M., M. Cervantes, W. C. Sauer, A. B. Araiza, N. Torrentera and M. Cervantes. 2004. Ileal amino acid digestibility and performance of growing pigs fed wheat-based diets supplemented with xylanase. J. Anim. Sci. 82:1997-2003

4.
Bell, J. M., A. Shires and M. O. Keith. 1983. Effect of hull and protein contents of barley on protein and energy digestibility and feeding value for pigs. Can. J. Anim. Sci. 63:201-211 crossref(new window)

5.
Burkitt, D. P., A. R. Walker and N. S. Painter. 1972. Effect of dietary fibre on stools and transit times and its role in the causation of disease. Lancet 2:1408-1412 crossref(new window)

6.
Canadian Council on Animal Care. 1993. Guide to the care and use of experimental animals. Vol. 1. 2nd ed. CCAC, Ottawa, ON. p. 298

7.
Cole, D. J. A. and S. A. Chadd. 1989. Voluntary food intake of growing pigs. In: The voluntary food intake of pigs (Ed. J. M. Forbes, M. A. Varley and T. L. J. Lawrence). British Society of Animal Production Occasional Publication Number 13, Edinburgh, UK. pp. 61-70

8.
Cromwell, G. L., K. L. Herkelman and T. S. Stahly. 1993. Physical, chemical and nutritional characteristics of distillers dried grains with solubles for chicks and pigs. J. Anim. Sci. 71:679-686

9.
den Hartog, L. A., M. W. A. Verstegen and J. Husiman. 1989. Amino acid digestibility in pigs as affected by diet composition. In: Absorption and utilization of amino acids. Vol III. (Ed. M. Friedman). CRC Press, Boca Raton, FL. pp. 201-216

10.
Fenton, T. W. and M. Fenton. 1979. An improved procedure for the determination of chromic oxide in feed and faeces. Can. J. Anim. Sci. 59:631-634 crossref(new window)

11.
Gabert, V. M., H. Jorgensen and C. M. Nyachoti. 2001. Bioavailability of amino acids in feedstuffs for swine. In: Swine nutrition (Ed. A. J. Lewis and L. L. Southern). CRC Press, Boca Raton, Florida. pp. 151-186

12.
Ham, G. A., R. A. Stock, T. J. Klopfenstein, E. M. Larson, D. H. Shain and H. E. Hanke. 1994. Wet corn distillers byproducts compared with dried corn distillers grains with solubles as a source of protein and energy for ruminants. J. Anim. Sci. 77:3246-3257

13.
Ingledew, W. M. 1993. Yeasts for production of fuel alcohol. In: The yeasts. 2nd Edition Vol 5. Yeast Technology. (Ed. A. H. Rose and J. S. Harrison). Academic Press, NY. pp. 245-291

14.
Just, A. 1982. The net energy value of crude fat for growth in pigs. Livst. Prod. Sci. 9:501-509 crossref(new window)

15.
Kennelly, J. J. and F. X. Aherne. 1980. The effect of fibre in diets formulated to contain different levels of energy and protein on digestibility coefficients in swine. Can. J. Anim. Sci. 60:717-726 crossref(new window)

16.
Lan, Y., F. O. Opapeju and C. M. Nyachoti. 2008. True ileal protein and amino acid digestibilities in wheat dried distillers's grains with solubles fed to finishing pigs. Anim. Feed Sci. Technol. 140:155-163 crossref(new window)

17.
Li, S. and W. C. Sauer. 1994. The effect of dietary fat content on amino acid digestibility in young pigs. J. Anim. Sci. 72:1737-1743

18.
Lindeman, M. D., J. L. Gentry, H. J. Moneque, G. L. Cromwell and K. A. Jacques. 1997. Determination of the contribution of an enzyme combination (Vegpro) to performance in growerfinisher pigs. In: Manipulating pig production VI (Ed. P. D. Cranwell). Australian Pig Science Association, Werribee, Victoria, Australia p. 247

19.
Lodge, S. L., R. A. Stock, T. J. Klopfenstein, D. H. Shain and D. W. Herold. 1997. Evaluation of corn and sorghum distillers byproducts. J. Anim. Sci. 75:37-43

20.
Lowrey, R. S., W. G. Pond, J. K. Loosli and J. H. Maner. 1962. Effect of dietary fat level on apparent nutrient digestibility by growing swine. J. Anim. Sci. 21:746-750 crossref(new window)

21.
Myer, R. O. and G. E. Combs. 1991. Fat supplementation of diets containing a high level of oats for growing-finishing swine. J. Anim. Sci. 69:4665-4669

22.
National Research Council. 1998. Nutrient requirements of swine. 10th ed. NAS-NRC, Washington, DC. p. 189

23.
Nyachoti, C. M., J. D. House, B. A. Slominski and I. R. Seddon. 2005. Energy and nutrient digestibilities in wheat dried distillers' grains with solubles fed to growing pigs. J. Sci. Food Agric. 85:2581-2586 crossref(new window)

24.
Pluske, J. R. and M. D. Lindemann. 1998. Maximizing the response in pig and poultry diets containing vegetable proteins by enzyme supplementation. In: Biotechnology in the Feed Industry, Proceedings of Alltech's 14th Annual Symposium (Ed. T. P. Lyons and K. A. Jacques). Nottingham University Press, Nottingham. pp. 375-392

25.
Sauer, W. C., A. Just, H. H. Jorgensen, M. Fekadu and B. O. Eggum. 1980. The influence of diet composition on the apparent digestibility of crude protein and amino acids at the terminal ileum and overall in pigs. Acta Agric. Scand. 30:448-459

26.
Saskatchewan Pork International. 2003. Mitchell's Gourmet Foods, Inc., Hog Settlement Grid. Available online at http://www.spimg.ca/grid-mgf.htm

27.
Schneider, B. H. and W. P. Flatt. 1975. The evaluation of feeds through digestibility experiments. University of Georgia Press, Athens, Georgia, p. 423

28.
Shurson, G., M. Spiehs and M. Whitney. 2004. The use of maize distiller's dried grains with solubles in pig diets. Pig News Inform. 25:75N-83N

29.
Spiehs, M. J., M. H. Whitney and G. C. Shurson. 2002. Nutrient database for distiller's dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. J. Anim. Sci. 80:2639-2645

30.
Stahly, T. S. 1984. Use of fats in growing pigs. In: Fats in animal nutrition. (Ed. J. Wiseman). Butterworths, Stoneham, MA. pp. 313-331

31.
Statistical Analysis System Institute, Inc. 1999. SAS/STAT users guide, version 6, 4th Edition. SAS Institute Inc., Cary, NC. p. 515

32.
Stein, H. H. and G. C. Shurson. 2009. The use and application of distillers dried grains with solubles in swine diets. J. Anim. Sci. 87:1292-1303 crossref(new window)

33.
Thacker, P. A. 2000. Recent advances in the use of enzymes with special reference to $\beta$-glucanases and pentosanases in swine rations. Asian-Aust. J. Anim. Sci. 13 (Special Issue):376-385

34.
Thacker, P. A. 2001. Effect of enzyme supplementation on the performance of growing-finishing pigs fed barley-based diets supplemented with soybean meal or canola meal. Asian-Aust. J. Anim. Sci. 14:1008-1013

35.
Thacker, P. A. 2006. Performance and carcass traits of growingfinishing pigs fed diets containing graded levels of wheat distillers grains with solubles. Can. J. Anim. Sci. 86:527-529

36.
Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597

37.
Varel, V. H. and W. G. Pond. 1985. Enumeration and activity of cellulolytic bacteria from gestating swine fed various levels of dietary fibre. Appl. Environ. Microbiol. 49:858-862

38.
Wahlstrom, R. C., C. S. German and G. W. Libal. 1970. Corn distillers dried grains with solubles in growing-finishing rations. J. Anim. Sci. 30:532-535

39.
Widyaratne, G. P. and R. T. Zijlstra. 2007. Nutritional value of wheat and corn distillers dried grain with solubles: Digestibility and digestible contents of energy, amino acids and phosphorus, nutrient excretion and growth performance of grower-finisher pigs. Can. J. Anim. Sci. 87:103-114

40.
Widyartne, G. P., J. F. Patience and R. T. Zijlstra. 2009. Effect of xylanase supplementation of diets containing wheat distiller's dried grains with solubles on energy, amino acid and phosphorus digestibility and growth performance of growerfinisher pigs. Can. J. Anim. Sci. 89:91-95 crossref(new window)

41.
Zasoski, R. J. and R. G. Burau. 1977. A rapid nitric-perchloric acid digestion method for multi-element tissue analysis. Commun. Soil Sci. Plant Anal. 8:425-436 crossref(new window)