Advanced SearchSearch Tips
Fibrolytic Rumen Bacteria: Their Ecology and Functions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fibrolytic Rumen Bacteria: Their Ecology and Functions
Koike, Satoshi; Kobayashi, Yasuo;
  PDF(new window)
Among rumen microbes, bacteria play important roles in the biological degradation of plant fiber due to their large biomass and high activity. To maximize the utilization of fiber components such as cellulose and hemicellulose by ruminant animals, the ecology and functions of rumen bacteria should be understood in detail. Recent genome sequencing analyses of representative fibrolytic bacterial species revealed that the number and variety of enzymes for plant fiber digestion clearly differ between Fibrobacter succinogenes and Ruminococcus flavefaciens. Therefore, the mechanism of plant fiber digestion is also thought to differ between these two species. Ecology of individual fibrolytic bacterial species has been investigated using pure cultures and electron microscopy. Recent advances in molecular biology techniques complement the disadvantages of conventional techniques and allow accurate evaluation of the ecology of specific bacteria in mixed culture, even in situ and in vivo. Molecular monitoring of fibrolytic bacterial species in the rumen indicated the predominance of F. succinogenes. Nutritive interactions between fibrolytic and non-fibrolytic bacteria are important in maintaining and promoting fibrolytic activity, mainly in terms of crossfeeding of metabolites. Recent 16S rDNA-based analyses suggest that presently recognized fibrolytic species such as F. succinogenes and two Ruminococcus species with fibrolytic activity may represent only a small proportion of the total fibrolytic population and that uncultured bacteria may be responsible for fiber digestion in the rumen. Therefore, characterization of these unidentified bacteria is important to fully understand the physiology and ecology of fiber digestion. To achieve this, a combination of conventional and modern techniques could be useful.
Fiber Digestion;Rumen Bacteria;Molecular Ecology;Uncultured Bacteria;
 Cited by
Substitution of common concentrates with by-products modulated ruminal fermentation, nutrient degradation, and microbial community composition in vitro, Journal of Dairy Science, 2015, 98, 7, 4762  crossref(new windwow)
Improved culturability of cellulolytic rumen bacteria and phylogenetic diversity of culturable cellulolytic and xylanolytic bacteria newly isolated from the bovine rumen, FEMS Microbiology Ecology, 2014, 88, 3, 528  crossref(new windwow)
Influence of rumen contents’ processing method on microbial populations in the fluid and subsequent in vitro fermentation of substrates of variable composition, Animal Feed Science and Technology, 2016, 220, 109  crossref(new windwow)
Monitoring of gene expression in Fibrobacter succinogenes S85 under the co-culture with non-fibrolytic ruminal bacteria, Archives of Microbiology, 2015, 197, 2, 269  crossref(new windwow)
Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation, Journal of Animal Science and Biotechnology, 2016, 7, 1  crossref(new windwow)
Effect of plant extracts from several tanniferous browse legumes on in vitro microbial fermentation of the tropical grass Pennisetum purpureum, Animal Feed Science and Technology, 2011, 168, 3-4, 188  crossref(new windwow)
Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage, Journal of Applied Microbiology, 2012, 112, 6, 1152  crossref(new windwow)
Biofilms, bubbles and boundary layers – A new approach to understanding cellulolysis in anaerobic and ruminant digestion, Water Research, 2016, 104, 93  crossref(new windwow)
The Use of Quantitative Real Time Polymerase Chain Reaction to Quantify Some Rumen Bacterial Strains in anIn VitroRumen System, Italian Journal of Animal Science, 2013, 12, 3, e58  crossref(new windwow)
In vitro evaluation of effects of gut region and fiber structure on the intestinal dominant bacterial diversity and functional bacterial species, Anaerobe, 2014, 28, 168  crossref(new windwow)
Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep, Journal of Dairy Science, 2011, 94, 12, 6069  crossref(new windwow)
The Fibrobacteres: an Important Phylum of Cellulose-Degrading Bacteria, Microbial Ecology, 2012, 63, 2, 267  crossref(new windwow)
Alterations in the Rumen Liquid-, Particle- and Epithelium-Associated Microbiota of Dairy Cows during the Transition from a Silage- and Concentrate-Based Ration to Pasture in Spring, Frontiers in Microbiology, 2017, 8  crossref(new windwow)
Microbial populations and fermentation profiles in rumen liquid and solids of Holstein cows respond differently to dietary barley processing, Journal of Applied Microbiology, 2015, 119, 6, 1502  crossref(new windwow)
Rumen prokaryotic communities of ruminants under different feeding paradigms on the Qinghai-Tibetan Plateau, Systematic and Applied Microbiology, 2017  crossref(new windwow)
Microorganisms in the rumen and reticulum of buffalo (Bubalus bubalis) fed two different feeding systems, BMC Research Notes, 2016, 9, 1  crossref(new windwow)
Ruminal Bacterial Diversity of Yaks (Bos Grunniens) Fed by Grazing or Indoor Regime on the Tibetan Plateau by Analysis of165 rRNAGene Libraries, Italian Journal of Animal Science, 2015, 14, 4, 3970  crossref(new windwow)
Involvement of recently cultured group U2 bacterium in ruminal fiber digestion revealed by coculture withFibrobacter succinogenesS85, FEMS Microbiology Letters, 2012, 336, 1, 17  crossref(new windwow)
Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows, Journal of Dairy Science, 2017, 100, 4, 2765  crossref(new windwow)
Effects of Suaeda glauca crushed seed on rumen microbial populations, ruminal fermentation, methane emission, and growth performance in Ujumqin lambs, Animal Feed Science and Technology, 2015, 210, 104  crossref(new windwow)
Exploration of Natural Biomass Utilization Systems (NBUS) for advanced biofuel—from systems biology to synthetic design, Current Opinion in Biotechnology, 2014, 27, 195  crossref(new windwow)
Methionine analogues HMB and HMBi increase the abundance of cellulolytic bacterial representatives in the rumen of cattle with no direct effects on fibre degradation, Animal Feed Science and Technology, 2013, 182, 1-4, 16  crossref(new windwow)
Fortification of dried distillers grains plus solubles with grape seed meal in the diet modulates methane mitigation and rumen microbiota in Rusitec, Journal of Dairy Science, 2015, 98, 4, 2611  crossref(new windwow)
Barros, M. E. C. and J. A. Thomson. 1987. Cloning and expression in Escherichia coli of a cellulase gene from Ruminococcus flavefaciens. J. Bacteriol. 169:1760-1762

Bryant, M. P. 1959. Bacterial species of the rumen. Bacteriol. Rev. 23:125-153

Cheng, K.-J., J. P. Fay, R. E. Howarth and J. W. Costerton. 1980. Sequence of events in the digestion of fresh legume leaves by rumen bacteria. Appl. Environ. Microbiol. 40:613-625 crossref(new window)

Cheng, K.-J., J. P. Fay, R. N. Coleman, L. P. Milligan and J. W. Costerton. 1981. Formation of bacterial microcolonies on feed particles in the rumen. Appl. Environ. Microbiol. 41:298-305 crossref(new window)

Cheng, K.-J., C. S. Stewart, D. Dinsdale and J. W. Costerton. 1983/84. Electron microscopy of bacteria involved in the digestion of plant cell walls. Anim. Feed Sci. Technol. 10:93-120 crossref(new window)

Cheng, K. J., C. W. Forsberg, H. Minato and J. W. Costerton. 1991. Microbial ecology and physiology of feed degradation within the rumen. In: Physiological Aspects of Digestion and Metabolism in Ruminants: Proceedings of the Seventh International Symposium on Ruminant Physiology (Ed. T. Tsuda, Y. Sasaki and R. Kawashima). pp. 595-624. Academic Press, New York

Czerkawski, J. W. and K.-J. Cheng. 1988. Compartmentation in the rumen. In: The Rumen Microbial Ecosystem. (Ed. P. N. Hobson). pp. 361-385. Elsevier Science Publishing, London

Dijkstra, B. J. and S. Tamminga. 1995. Simulation of the effects of diet on the contribution of rumen protozoa to degradation of fibre in the rumen. Br. J. Nutr. 74:617-634 crossref(new window)

Edwards, J. E., N. R. McEwan, A. J. Travis and R. J. Wallace. 2004. 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie van Leeuwenhoek. 86:263-281 crossref(new window)

Flint, H. J., C. A. McPherson and J. Bisset. 1989. Molecular cloning of genes from Ruminococcus flavefaciens encoding xylanase and β-glucosidase and xylanase genes cloned in Escherichia coli. FEMS Microbiol. Lett. 51:231-236

Flint, H. J. 1997. The rumen microbial ecosystem-some recent developments. Trends Microbiol. 5:483-488 crossref(new window)

Flint, H. J., E. A. Bayer, M. T. Rincon, R. Lamed and B. A. White. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6:121-131 crossref(new window)

Fondevila, M. and B. A. Dehority. 1996. Interaction between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages. J. Anim. Sci. 74:678-684 crossref(new window)

Gong, J., R. Y. C. Lo and C. W. Forsberg. 1989. Molecular cloning and expression in Escherichia coli of a cellodextrinase gene from Bacteroides succinogenes S85. Appl. Environ. Microbiol. 55:132-136

Goto, H., H. Yabuki, T. Shinkai and Y. Kobayashi. 2006. Quantification and visualization of the uncultured bacterial group U2 and U3 from the rumen. Reprod. Nutr. Dev. 46 (Suppl. 1):S16

Gaudet, G. and B. Gaillard. 1987. Vesicle formation and cellulose degradation in Bacteroides succinogenes cultures: ultrastrucrural aspects. Arch. Microbiol. 148:150-154 crossref(new window)

Hespell, R. B., D. E. Akin and B. A. Dehoriy. 1997. Bacteria, fungi, and protozoa of the rumen. In: Gastrointestinal microbiology, vol 2, (Ed. R. I. Mackie, B. A. White and R. E. Isaacson). pp. 59-141. Chapman and Hall, New York

Jun, H. S., M. Qi, J. K. Ha and C. W. Forsberg. 2007. Fibrobacter succinogenes, a dominant fibrolytic ruminal bacterium: transition to the post genomic era. Asian-Aust. J. Anim. Sci. 20:802-810

Kawai, S., H. Honda, T. Tanase, M. Taya, S. Iijima and T. Kobayashi. 1987. Molecular cloning of Ruminococcus albus cellulase gene. Agric. Biol. Chem. 51:59-63

Kobayashi, Y. 2006. Inclusion of novel bacteria in rumen microbiology: Need for basic and applied science. Anim. Sci. J. 77:375-385 crossref(new window)

Koike, S., J. Pan, Y. Kobayashi and K. Tanaka. 2003a. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J. Dairy. Sci. 86:1429-1435 crossref(new window)

Koike, S., S. Yoshitani, Y. Kobayashi and K. Tanaka. 2003b. Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol. Lett. 229:23-30 crossref(new window)

Koike, S., H. Yabuki and Y. Kobayashi. 2007. Validation and application of real-time polymerase chain reaction assays for representative rumen bacteria. Anim. Sci. J. 78:135-141 crossref(new window)

Kudo, H., K. J. Cheng and J. W. Costerton. 1987. Interaction between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Can. J. Microbiol. 33:244-248 crossref(new window)

Latham, M. J., B. E. Brooker, G. L. Pettipher and P. J. Harris. 1978a. Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol. 35:156-165

Latham, M. J., B. E. Brooker, G. L. Pettipher and P. J. Harris. 1978b. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol. 35:1166-1173

Leschine, S. B. 1995. Cellulose degradation in anaerobic environments. Annu. Rev. Microbiol. 49:399-426 crossref(new window)

McAllister, T. A., H. D. Bae, G. A. Jones and K.-J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-3018

McGavin, M., C. W. Forgberg, B. Crosby, A. W. Bell, D. Dignard and D. Y. Thomas. 1989. Structure of the cel-3 gene from Fibrobacter succinogenes S85 and characteristics of the encoded gene product, endoglucanase 3. J. Bacteriol. 170:5587-5589

Michalet-Doreau, B., I. Fernandez and G. Fonty. 2002. A comparison of enzymatic and molecular approaches to characterize the cellulolytic microbial ecosystems of the rumen and the cecum. J. Anim. Sci. 80:790-796

Minato, H. and T. Suto. 1978. Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. J. Gen. Appl. Microbiol. 24:1-16 crossref(new window)

Minato, H., M. Mitsumori and K.-J. Cheng. 1993. Attachment of microorganisms to solid substrate in the rumen. In: Genetics, Biochemistry and Ecology of Lignocellulose Degradation, (Ed. K. Shimada, S. Hoshino, K. Ohmiya, K. Sakka, Y, Kobayashi and S. Karita). pp. 139-145. Uni Publishers, Tokyo

Morrison, M. and J. Miron. 2000. Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pilproteins? FEMS Microbiol. Lett. 185:109-115

Morrison, M., K. E. Neslon, I. Cann, C. W. Forsberg, R. I. Mackie, J. B. Russell, B. A. White, D. B. Wilson, K. Amaya, B. Cheng, S. Qi, H.-S. Jun, S. Mulligan, K. Tran, H. Carty, H. Khouri, W. Nelson, S. Daugherty and K. Tran. 2003. The Fibrobacter succinogenes strain S85 sequencing project. 3rd ASM-TIGR, Microbial Genome Meeting, New Orleans

Mosoni, P., G. Fonty and P. Gouet. 1997. Competition between ruminal cellulolytic bacteria for adhesion to cellulose. Curr. Microbiol. 35:44-47 crossref(new window)

Odenyo, A. A., R. I. Mackie, D. A. Stahl and B. A. White. 1994. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Appl. Environ. Microbiol. 60:3688-3696

Ohara, H., S. Karita, T. Kimura, K. Sakka and K. Ohmiya. 2000. Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci. Biotechnol. Biochem. 64:254-260 crossref(new window)

Ohmiya, K., K. Nagashima, T. Kajino, E. Goto, A. Tsukada and S. Shimizu. 1988. Cloning of the cellulase gene from Ruminococcus albus and its expression in Escherichia coli. Appl. Environ. Microbiol. 54:1511-1515

Orpin, C. G. and K. N. Joblin. 1997. The rumen anaerobic fungi. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). pp. 140-195. Blackie Academic and Professional Publishers, London

Osborne, J. M. and B. A. Dehority. Synergism in degradation and utilization of intact forage cellulose, hemicellulose, and pectin by three pure cultured of ruminal bacteria. Appl. Environ. Microbiol. 55:2247-2250

Pegden, R. S., M. A. Larson, R. J. Grant and M. Morrison. 1998. Adherence of the Gram-positive bacterium Ruminococcus albus to cellulose and identification of a novel form of cellulose-binding protein which belongs to the Pil family of proteins. J. Bacteriol. 180:5921-5927

Ramšak, A., M. Peterka, K. Tajima, J. C. Martin, J. Wood, M. E. A. Johnson, R. I. Aminov, H. J. Flint and G. Avgustin. 2000. Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. FEMS Microbiol. Ecol. 33:69-79 crossref(new window)

Rincon, M. T., T. Čepeljnik, J. C. Martin, R. Lamed, Y. Barak, E. A. Bayer and H. J. Flint. 2005. Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface. J. Bacteriol. 187:7569-7578 crossref(new window)

Roger, V., G. Fonty, S. Komisarczuk-Bony and P. Gouet. 1990. Effects of physicochemical factors on the adhesion to cellulose avicel of the ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes. Appl. Environ. Microbiol. 56:3081-3087

Russell, J. B. 1985. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Appl. Environ. Microbiol. 49:572-576

Sawanon, S., T. Shinkai, S. Koike, Y. Kobayashi and K. Tanaka. 2003. Indication of a novel group of Selenomonas ruminantium with high cellulase and fiber-attaching activities from the rumen. In: Biotechnology of Lignocellulose Degradation and Biomass Utilization (Ed. K. Ohmiya, K. Sakka, S. Karita, T. Kimura, M. Sakka and Y. Onishi). pp. 363-368. Uni Publishers, Tokyo

Sawanon, S. and Y. Kobayashi. 2006. Synergistic fibrolysis in the rumen by cellulolytic Ruminococcus flavefaciens and noncellulolytic Selenomonas ruminantium: Evidence in defined cultures. Anim. Sci. J. 77:208-214 crossref(new window)

Scheifinger, C. C. and M. J. Wolin. 1973. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl. Microbiol. 26:789-795

Schwarz, W. H. 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56:634-649 crossref(new window)

Shi, Y., C. L. Odt and P. J. Weimer. 1997. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl. Environ. Microbiol. 63:734-742

Shinkai, T. and Y. Kobayashi. 2007a. Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR. Appl. Environ. Microbiol. 73:1646-1652 crossref(new window)

Shinkai, T., N. Matsumoto and Y. Kobayashi. 2007b. Ecological characterization of three different phylogenetic groups belonging to the cellulolytic bacterial species Fibrobacter succinogenes in the rumen. Anim. Sci. J. 78:503-511 crossref(new window)

Sipat, A., K. A. Taylor, R. Y. C. Lo, C. W. Forsberg and P. J. Krell. 1987. Molecular cloning of xylanase from Bacteroides succinogenes and its expression in Escherichia coli. Appl. Environ. Microbiol. 53:477-481

Stevenson, D. M. and P. J. Weimer. 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75:165-174 crossref(new window)

Stewart, C. S., H. J. Flint and M. P. Bryant. 1997. The rumen bacteria. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). pp. 10-72. Blackie Academic and Professional Publishers, London

Sung, H. G., Y. Kobayashi, J. Chang, A. Ha, I. H. Hwang and J. K. Ha. 2007. Low ruminal pH reduces dietary fiber digestion via reduced microbial attachment. Asian-Aust. J. Anim. Sci. 20:200-207

Ton-That, H., L. A. Marraffini and O. Schneewind. 2004. Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim. Biophys. Acta. 1694:269-278

Uyeno, Y., Y. Sekiguchi, K. Tajima, A. Takenaka, M. Kurihara and Y. Kamagata. 2007. Evaluation of group-specific, 16S rRNAtargeted scissor probes for quantitative detection of predominant bacterial populations in dairy cattle rumen. J. Appl. Microbiol. 103:1995-2005 crossref(new window)

Van Soest, P. J. 1982. Nutritional Ecology of the Ruminant. O&B Books, Corvallis

Varel, V. H. and B. A. Dehority. 1989. Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets. Appl. Environ. Microbiol. 55:148-153

Weimer, P. J., G. C. Waghorn, C. L. Odt and D. R. Mertens. 1999. Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. J. Dairy Sci. 82:122-134 crossref(new window)

White, B. A. 1988. Genetic engineering of ruminal microorganisms discussed. Foodstuffs. Apr. 18:14-16

Williams, A. G. and N. H. Strachan. 1984. Polysaccharide degrading enzymes in microbial populations from the liquid and solid fractions of bovine rumen digesta. Can. J. Anim. Sci. 64:58-59 crossref(new window)

Williams, A. G. and G. S. Coleman. 1997. The rumen protozoa. In:The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). pp. 73-139. Blackie Academic and Professional Publishers, London

Wolin, M. J., T. L. Miller and C. S. Stewart. 1997. Microbemicrobe interactions. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). pp. 467-491. Blackie Academic and Professional Publishers, London

Wood, T. M., C. A. Wilson and C. S. Stewart. 1982. Preparation of cellulase from the cellulolytic anaerobic bacterium Ruminococcus albus and its release from the bacterial cell wall. Biochem. J. 205:129-137

Yu, Z., M. Yu and M. Morrison. 2006. Improved serial analysis of V1 ribosomal sequence sequence tags (SARST-V1) provides a rapid, comprehensive, sequence-based characterization of bacterial diversity and community composition. Environ. Microbiol. 8:603-611 crossref(new window)