Advanced SearchSearch Tips
Effect of 2-Bromoethanesulfonic Acid on In vitro Fermentation Characteristics and Methanogen Population
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of 2-Bromoethanesulfonic Acid on In vitro Fermentation Characteristics and Methanogen Population
Lee, S.Y.; Yang, S.H.; Lee, W.S.; Kim, H.S.; Shin, D.E.; Ha, Jong K.;
  PDF(new window)
An in vitro incubation study was conducted to investigate effects of 2-bromoethanesulfonic acid (BES) on ruminal fermentation characteristics and methanogen population. BES at the final concentration of 0, 1 and 5 mM with two different substrates having a different ratio of timothy and concentrate (100% timothy vs. 40% timothy-60% concentrate) was incubated for 0, 24, 48 and 72 h in a incubator. Total DNA extracted from culture fluid was used as a template for real-time PCR to measure the population of methanogens. Four different primer sets were used for amplification of total bacteria, total methanogens, the order Methanobacteriales and the order Methanomicrobiales. BES reduced (p<0.01) total gas and methane production in a dose-dependent manner. BES at 5 mM inhibited methane production by more than 95% compared to the control. An interaction between substrate and level of BES in total gas and methane was detected (p<0.01). The decrease of methane production with increasing BES level was more pronounced on mixed substrate than on timothy alone. However, hydrogen production was increased by BES treatment (p<0.01). Total VFA concentration was not affected, but molar percentage of propionate and butyrate was increased and acetate to propionate ratio was reduced by BES treatment (p<0.01). BES did not affect the population density of total bacteria but reduced (p<0.01) the population of total methanogens, the order Methanobacteriales and the order Methanomicrobiales in a dose-dependent manner. The type of substrate did not influence the trend, although the magnitude of response was different between all-roughage and 40% roughage substrate.
Methane;2-Bromoethanesulfonic Acid;Fermentation;Methanogen;
 Cited by
Control of Methane Emission in Ruminants and Industrial Application of Biogas from Livestock Manure in Korea,;;;;;

아세아태평양축산학회지, 2011. vol.24. 1, pp.130-136 crossref(new window)
2011년도 축산부문 온실가스 인벤토리 산정 연구,양승학;최동윤;조성백;황옥화;박규현;

한국축산시설환경학회지, 2014. vol.20. 4, pp.139-146 crossref(new window)
Using Agro-Biomass as Substrate in Solid State Fermentation, Journal of Biomedicine and Biotechnology, 2012, 2012, 1110-7251, 1  crossref(new windwow)
Reducing in vitro rumen methanogenesis for two contrasting diets using a series of inclusion rates of different additives, Animal Production Science, 2014, 54, 2, 141  crossref(new windwow)
Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis, Frontiers in Microbiology, 2015, 6, 1664-302X  crossref(new windwow)
Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production, Journal of Applied Phycology, 2016, 28, 2, 1443  crossref(new windwow)
Agarwal, N., D. N. Kamra, P. N. Chatterjee, R. Kumar and L. C. Chaudhary. 2008. In vitro methanogenesis, microbial profile and fermentation of green forages with buffalo rumen liquor as influenced by 2-bromoethanesulphonic acid. Asian-Aust. J. Anim. Sci. 21(6):818-823

Bhatta, R., O. Enishi and M. Kurihara. 2007. Measurement of methane production from ruminants. Asian-Aust. J. Anim Sci. 20(8):1305-1318

Balch, W. E. and R. S. Wolfe. 1979. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium. J. Bacteriol. 137:264-273

Behlke, E. J. 2007. Attenuation of ruminal methanogenesis. dissertations in animal science. University of Nebraska-Lincoln, USA

Bonhomme, A. 1990. Rumen ciliates: their metabolism and relationships with bacteria and their hosts. Anim. Feed Sci. Technol. 30:203-266 crossref(new window)

Busquet, M., S. Calsamiglia, A. Ferret and C. Kamel. 2005. Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system. Anim. Feed Sci. Technol. 123-124: 597-613 crossref(new window)

Choi, N. J., S. Y. Lee, H. G. Sung, S. C. Lee and Jong K. Ha. 2004. Effects of halogenated compounds, organic acids and unsaturated fatty acids on in vitro methane production and fermentation characteristics. Asian-Aust. J. Anim. Sci. 17(9):1255-1259

Crutzen, P. J., I. Aselmann and W. Seiler. 1986. Methane production by domestic animals, wild ruminants, other herbivorous fauna and humans. Tellus. 388:271-284

Czerkawski, J. W., K. L. Blaxter and F. W. Wainman. 1966. The metabolism of oleic, linoleic, and linolenic acids by sheep with reference to their effects on methane production. Br. J. Nutr. 20 :349-362 crossref(new window)

Demeyer, D. I. and C. J. Van Nevel. 1975. Methanogenesis: an integrated part of carbohydrate fermentation, and its control. pp. 366-382. In: Digestion and metabolism in the ruminant (Ed. I. W. McDonald and I. J. C. Warner). The University of New England Publishing Unit, Armidale, Australia

Denman, S. E. and C. S. McSweeney. 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58:572-582 crossref(new window)

Denman, S. E., N. W. Tomkins and C. S. McSweeney. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 62(3):313-322 crossref(new window)

Dohme, F., A. Machmuller, A. Wasserfallen and M. Kreuzer. 2001. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett Appl Microbiol. 32(1):47-51 crossref(new window)

Dong, Y., H. D. Bae, T. A. McAllister, G. W. Mathison and K.-J. Cheng. 1999. Effects of exogenous fibrolytic enzymes, alphabromoethanesulfonate and monensin on fermentation in a rumen simulation (RUSITEC) system. Can. J. Anim Sci. 79:491-498 crossref(new window)

Erwin, E. S., G. J. Marco and E. M. Emery. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 41:1768-1770

Hungate, R. E., W. Smith, T. Bauchop, I. Yu and J. C. Rabinowitz. 1970. Formate as an intermediate in the bovine rumenfermentation. J. Bacteriol. 102:389-397

Immig, I., D. Demeyer, D. Fiedler, C. Van Nevel and L. Mbanzamihigo. 1996. Attempts to induce reductive acetogenesis into a sheep rumen. Arch. Tierernahr. 49(4):363-370 crossref(new window)

Joblin, K. N. 2005. Methanogenic archaea. In: Methods in gut microbial ecology for ruminants (Ed. H. P. S. Makkar and C. S. McSweeney). pp. 47-53. Springer, Dordrecht, The Netherlands

Krumholz, L. R., C. W. Forsberg and D. M. Veira. 1983. Association of methanogenic bacteria with rumen protozoa. Can. J. Microbiol. 29:676-680 crossref(new window)

Lee, C. H., H. G. Sung, M. Eslami, S. Y. Lee, J. Y. Song, S. S. Lee and J. K. Ha. 2007. Effects of Tween 80 pretreatment on dry matter disappearance of rice straw and cellulolytic bacterial adhesion. Asian-Aust. J. Anim Sci. 20(9):1397-1401

Lee, H. J., S. C. Lee, J. D. Kim, Y. G. Oh, B. K. Kim, C. W. Kim and K. J. Kim. 2003. Methane production potential of feed ingredients as measured by in vitro gas test. Asian-Aust. J. Anim Sci. 16(8):1143-1150

Lin, C., L. Raskin and D. A. Stahl. 1997. Microbial community structure in gastrointestinal tracts of domestic animals: comparative analyses using rRNA targeted oligonucleotide probes. FEMS Micriobiology Ecology 22:281-294 crossref(new window)

Martin, S. A. 1998. Manipulation of ruminal fermentation with organic acids: a review. J. Anim. Sci. 76(12):3123-3132

Martin, S. A. and J. M. Macy. 1985. Effects of monensin, pyromellitic diimide and 2-bromoethanesulfonic acid on rumen fermentation in vitro. J. Anim. Sci. 60:544-550 crossref(new window)

McAllister, T. A., E. K., Okine, G. W. Mathison and K. -J. Cheng. 1996. Dietary, environmental and microbiological aspects of methane production in ruminants. Can. J. Anim. Sci. 76:231-243 crossref(new window)

McSweeney, C. S., S. E. Denman, A.-D. G. Wright and Z. Yu. 2007. Application of recent DNA/RNA-based techniques in rumen ecology. Asian-Aust. J. Anim. Sci. 20(2):283-294

Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop. 28:7-15

Mitsumori, M. and W. Sun. 2008. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Aust. J. Anim Sci. 21(1):144-154

Moe, P. W. and H. F. Tyrrell. 1979. Methane production in dairy cows. J. Dairy Sci. 62:1583-1586 crossref(new window)

Moss, A. R. 1993. Methane: global warming and production by animals. Chalcombe Publications, Kingston, UK

Nicholson, M. J., P. N. Evans and K. N. Joblin. 2007. Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis: identification of uncultured methanogens. Microb. Ecol. 54:141-150 crossref(new window)

Nollet, L., D. Demeyer and W. Verstraete. 1997. Effect of 2-bromoethanesulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis. Appl. Environ. Microbiol. 63:194-200

SAS. 2002. SAS user's guide: Statistics (Version 9.01 Ed.). SAS Inst. Inc., Cary, N.C. USA

Sauer, F. D. and R. M. Teather. 1987. Changes in oxidation reduction potentials and volatile fatty acid production by rumen bacteria when methane synthesis is inhibited. J. Dairy Sci. 70(9):1835-1840 crossref(new window)

Skillman, L. C., P. N. Evans, C. Strompl and K. N. Joblin. 2006. 16S rDNA directed PCR primers and detection of methanogens in the bovine rumen. Lett. Appl. Microbiol. 42:222-228 crossref(new window)

Snedecor, G. W. and W. G. Cochran. 1967. Statistical methods (6th Ed.). Iowa State Univ. Press, Ames

Sparling, R. and L. Daniels. 1987. The specificity of growth inhibition of methanogenic bacteria by bromoethanesulfonate. Can. J. Microbiol. 33:1132-1136 crossref(new window)

Tajima, K., T. Nagamine, H. Matsui, M. Nakamura and R. I. Aminov. 2001. Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol. Lett. 200:67-72 crossref(new window)

Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feedstuffs. Anim. Feed Sci. Technol. 48:185-197 crossref(new window)

Trei, J. E., R. C. Parish and Y. K. Singh. 1971. Effect of methane inhibitors on rumen metabolism and feedlot performance of sheep. J. Dairy Sci. 54(4):536-540 crossref(new window)

Ungerfeld, E. M., S. R. Rust, D. R. Boone and Y. Liu. 2004. Effects of several inhibitors on pure cultures of ruminal methanogens. J. Appl. Microbiol. 97(3):520-526 crossref(new window)

Van Kessel, J. S. and J. B. Russell. 1996. The effect of pH on ruminal methanogenesis. FEMS Microbiol. Ecol. 20:205-210 crossref(new window)

Van Nevel, C. J. and D. I. Demeyer. 1988. Manipulation of rumen fermentation. In: The rumen microbial ecosystem (Ed. P. N. Hobson) pp. 387-443. Elsevier Science Publishers, New York, USA

Van Nevel, C. J. and D. I. Demeyer. 1995. Feed additives and other interventions for decreasing methane emissions. In:Biotechnology in animal feeds and animal feeding (Ed. R. J. Wallace and A. Chesson) pp. 329-349. VCH, Weinheim, Germany

Wolin, M. J. 1960. A theoretical rumen fermentation balance. J. Dairy Sci. 43:1452-1459 crossref(new window)

Wright, A. D., C. H. Auckland and D. H. Lynn. 2007. Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. Appl. Environ. Microbiol. 73:4206-4210 crossref(new window)

Yu, Y., C. Lee, J. Kim and S. Hwang. 2005. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89:670-679 crossref(new window)

Zicarelli, F., Serena Calabro, Vincenzo Piccolo, Simona D'Urso, Raffaella Tudisco, Fulvia Bovera, Monica I. Cutrignelli and Federico Infascelli. 2008. Diets with different forage/concentrate ratios for the mediterranean Italian buffalo: In vivoand In vitro digestibility. Asian-Aust. J. Anim. Sci. 21(1):75-82