Advanced SearchSearch Tips
Stage-specific Expression of Lanosterol 14-Demethylase in Mouse Oocytes in Relation to Fertilization and Embryo Development Competence
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Stage-specific Expression of Lanosterol 14-Demethylase in Mouse Oocytes in Relation to Fertilization and Embryo Development Competence
Song, Xiaoming; Ouyang, Hong; Tai, Ping; Chen, Xiufen; Xu, Baoshan; Yan, Jun; Xia, Guoliang; Zhang, Meijia;
  PDF(new window)
Follicular fluid meiosis-activating sterol (FF-MAS) has been suggested as a positive factor which could improve the oocyte quality and subsequent embryo development after in vitro fertilization. However, FF-MAS is a highly lipophilic substance and is hard to detect in studying the relationship between MAS and quality of oocyte maturation. The present study focused on the expression of lanosterol 14-demethylase (LDM), a key enzyme that converts lanosterol to FF-MAS, on mouse oocyte maturation and its potency on development. LDM expression was strong in gonadotropin-primed germinal vesicle stage oocytes, weak after germinal vesicle breakdown (GVBD), and then strong in MII stage oocytes. The LDM-specific inhibitor azalanstat significantly inhibited oocyte fertilization (from 79.4% to 68.3%, p<0.05). Also, azalanstat (5 to 50 ) decreased the percentage of blastocyst development dosedependently (from 78.7% to 23.4%, p<0.05). The specific inhibition of sterol -reductase and -reductase by AY9944 accumulates FF-MAS and could increase blastocyst development rates. Additionally, in the AY9944 group, the rate of inner cell mass (ICM)/ total cells was similar to that of in vivo development, but the rate was significantly decreased in azalanstat treatment. In conclusion, LDM, the key enzyme of FF-MAS production, may play an important role in fertilization and early development of the mouse embryo, especially in vitro.
Mouse Oocyte;Lanosterol 14-Demethylase;In vitro Fertilization;Early Embryo Development;
 Cited by
Avery, B. and T. Greve. 2000. Effects of ethanol and dimethylsulphoxide on nuclear and cytoplasmic maturation of bovine cumulus-oocyte complexes. Mol. Reprod. Dev. 55:438-445 crossref(new window)

Abeydeera, L. R. 2001. In vitro fertilization and embryo development in pigs. Reprod. 58(Suppl. 1):159-173

Burton, P. M., D. C. Swinney, R. Heller, B. Dunlap, M. Chiou, E. Malonzo, J. Haller, K. A. Walker, A. Salari. and S. Murakami. 1995. Azalanstat (RS-21607), a lanosterol 14 alphademethylase inhibitor with cholesterol-lowering activity. Biochem. Pharmacol. 50:529-544 crossref(new window)

Byskov, A. G., C. Y. Andersen and L. Leonardsen. 2002. Role of meiosis activating sterols, MAS, in induced oocyte maturation. Mol. Cell. Endocrinol. 187:189-196 crossref(new window)

Byskov, A. G., C. Y. Andersen, L. Nordholm, H. Thogersen, G. Xia, O. Wassmann, J. V. Andersen, E. Guddal and T. Roed. 1995. Chemical structure of sterols that activate oocyte meiosis. Nature 374:559-562 crossref(new window)

Cao, X., S. H. Pomerantz, M. Popliker and A. Tsafriri. 2004. Meiosis-activating sterol synthesis in rat preovulatory follicle: is it involved in resumption of meiosis? Biol. Reprod. 71:1807-1812 crossref(new window)

Donnay, I., I. Faerge, C. Grondahl, B. Verhaeghe, H. Sayoud, N. Ponderato, C. Galli and G. Lazzari. 2004. Effect of prematuration, meiosis activating sterol and enriched maturation medium on the nuclear maturation and competence to development of calf oocytes. Theriogenol. 62:1093-1107 crossref(new window)

Fink, M., J. Acimovic, T. Rezen, N. Tansek and D. Rozman. 2005. Cholesterogenic lanosterol 14alpha-demethylase (CYP51) is an immediate early response gene. Endocrinol. 146:5321-5331 crossref(new window)

Grondahl, C., J. Breinholt, P. Wahl, A. Murray, T. H. Hansen, I. Faerge, C. E. Stidsen, K. Raun and C. Hegele-Hartung. 2003. Physiology of meiosis-activating sterol: endogenous formation and mode of action. Hum. Reprod. 18:122-129 crossref(new window)

Hamamah, S. 2005. Oocyte and embryo quality: is their morphology a good criterion? J. Gynecol. Obstet. Biol. Reprod. 34:38-41

Hegele-Hartung, C., J. Kuhnke, M. Lessl, C. Grondahl, J. Ottesen, H. M. Beier, S. Eisner and U. Eichenlaub-Ritter. 1999. Nuclear and cytoplasmic maturation of mouse oocytes after treatment with synthetic meiosis-activating sterol in vitro. Biol. Reprod. 61:1362-1372 crossref(new window)

Jang, H. Y., Y. S. Jung, H. T. Cheong, J. T. Kim, C. K. Park, H. S. Kong, H. K. Lee and B. K. Yang. 2008. Effects of cell status of bovine oviduct epithelial cell (BOEC) on the development of bovine IVM/IVF embryos and gene expression in the BOEC used or not used for the embryo culture. Asian-Aust. J. Anim. Sci. 21:980-987

Kim, C. K., K. I. Jeon, D. M. Lim, T. N. Johng, J. M. Trzaskos, J. L. Gaylor and Y. K. Paik. 1995. Cholesterol biosynthesis from lanosterol: regulation and purification of rat hepatic sterol 14-reductase. Biochim. Biophys. Acta. 1259:39-48

Lau, C. F., R. Vogel, G. Obe and H. Spielmann. 1991. Embryologic and cytogenetic effects of ethanol on preimplantation mouse embryos in vitro. Reprod. Toxicol. 5:405-410 crossref(new window)

Loft, A., C. Bergh, S. Ziebe, K. Lundin, A. Nyboe Andersen, M. Wikland, H. Kim and J. C. Arce. 2004. A randomized, doubleblind, controlled trail of the effect of adding follicular fluid meiosis activating sterol in an ethanol formulation to donated human cumulus-enclosed oocytes before fertilization. Fertil. Steril. 81:42-50 crossref(new window)

Loft, A., S. Ziebe, K. Erb, P. E. Rasmussen, I. Agerholm, B. Hauge, M. Bungum, L. Bungum, C. Gr$\varnothing$ndahl and K. Lyby. 2005. Impact of follicular-fluid meiosis-activating sterol in an albumin-based formulation on the incidence of human preembryos with chromosome abnormalities. Fertil Steril. 84(Suppl. 2):1269-1276

Leonardsen, L., M. Stromstedt, D. Jacobsen, K. S. Kristensen, M. Baltsen, C. Y. Andersen and A. G. Byskov. 2000. Effect of inhibition of sterol delta 14-reductase on accumulation of meiosis-activating sterol and meiotic resumption in cumulusenclosed mouse oocytes in vitro. J. Reprod. Fertil. 118:171-179 crossref(new window)

Ma, S. F., X. Y. Liu, D. Q. Miao, Z. B. Han, X. Zhang, Y. L. Miao, R. Yanagimachi and J. H. Tan. 2005. Parthenogenetic activation of mouse oocytes by strontium chloride: a search for the best conditions. Theriogenol. 64:1142-1157 crossref(new window)

Marin Bivens, C. L., C. Grondahl, A. Murray, T. Blume, Y. Q. Su and J. J. Eppig. 2004a. Meiosis-activating sterol promotes the metaphase I to metaphase II transition and preimplantation developmental competence of mouse oocytes maturing in vitro. Biol. Reprod. 70:1458-1464 crossref(new window)

Marin Bivens, C. L., B. Lindenthal, M. J. O'Brien, K. Wigglesworth, T. Blume, C. Grondahl and J. J. Eppig. 2004b. A synthetic analogue of meiosis-activating sterol (FF-MAS) is a potent agonist promoting meiotic maturation and preimplantation development of mouse oocytes maturing in vitro. Hum. Reprod. 19:2340-2344 crossref(new window)

Nicolson, G. L., R. Yanagimachi and H. Yanagimachi. 1975. Ultrastructural localization of lectin-binding sites on the zonae pellucidae and plasma membranes of mammalian eggs. J. Cell. Biol. 66:263-274 crossref(new window)

Quinn, P., C. Barros and D. G. Whittingham. 1982. Preservation of hamster oocytes to assay the fertilizing capacity of human spermatozoa. J. Reprod. Ferti. 66:161-168 crossref(new window)

Rozman, D., M. Cotman and R. Frangez. 2002. Lanosterol 14alpha-demethylase and MAS sterols in mammalian gametogenesis. Mol. Cell. Endocrinol. 187:179-187 crossref(new window)

Rozman, D., M. Seliskar, M. Cotman and M. Fink. 2005. Precholesterol precursors in gametogenesis. Mol. Cell. Endocrinol. 234:47-56 crossref(new window)

Sirard, M. A., H. M. Florman, M. L. Leibfried-Rutledge, F. L. Barnes, M. L. Sims and N. L. First. 1989. Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol. Reprod. 40:1257-1263 crossref(new window)

Swinney, D. C., So, O. Y., D. M. Watson, P. W. Berry, A. S. Webb, D. J. Kertesz, E. J. Shelton, P. M. Burton and K. A. Walker. 1994. Selective inhibition of mammalian lanosterol 14 alphademethylase by RS-21607 in vitro and in vivo. Biochem. 33:4702-4713 crossref(new window)

Tosti, E., R. Boni and A. Cuomo. 2002. Fertilization and activation currents in bovine oocytes. Reprod. 124:835-846 crossref(new window)

Vaknin, K. M., S. Lazar, M. Popliker and A. Tsafriri. 2001. Role of meiosis-activating sterols in rat oocyte maturation: effects of specific inhibitors and changes in the expression of lanosterol 14alpha-demethylase during the preovulatory period. Biol. Reprod. 64:299-309 crossref(new window)

Wang, C., H. Xie, X. Song, G. Ning, J. Yan, X. Chen, B. Xu, H. Ouyang and G. Xia. 2006. Lanosterol 14alpha-demethylase expression in the mouse ovary and its participation in cumulus-enclosed oocyte spontaneous meiotic maturation in vitro. Theriogenol. 66:1156-1164 crossref(new window)

Xie, H., G. Xia, A. G. Byskov, C. Y. Andersen, S. Bo and Y. Tao. 2004. Roles of gonadotropins and meiosis-activating sterols in meiotic resumption of cultured follicle-enclosed mouse oocytes. Mol. Cell. Endocrinol. 218:155-163 crossref(new window)

Yang, J., M. Fu, S. Wang, X. Chen, G. Ning, B. Xu, Y. Ma, M. Zhang and G. Xia. 2008. An antisense oligodeoxynucleotide to the LH receptor attenuates FSH-induced oocyte maturation in mice. Asian-Aust. J. Anim. Sci. 21:972-979

Kim, C. K., K. I. Jeon, D. M. Lim, T. N. Johng, J. M. Trzaskos, J. L. Gaylor and Y. K. Paik. 1995. Cholesterol biosynthesis from lanosterol: regulation and purification of rat hepatic sterol 14-reductase. Biochim. Biophys. Acta. 1259:39-48