Advanced SearchSearch Tips
The Effect of the Addition and Removal of Various Cryoprotectants on the Nuclear Maturation and ATP Content of Immature Porcine Oocytes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Effect of the Addition and Removal of Various Cryoprotectants on the Nuclear Maturation and ATP Content of Immature Porcine Oocytes
Tsuzuki, Y.; Nozawa, K.; Ashizawa, K.;
  PDF(new window)
This study was undertaken to investigate the influence of exposure and removal of four different cryoprotectants (CPAs) on the ATP content of cumulus cell-enclosed (COs) and cumulus cell-denuded (DOs) immature porcine oocytes. The in vitro nuclear maturation of the COs, exposed to and removed from the CPAs was also assessed. Both COs and DOs were exposed to 1.5 M concentrations of each CPA (ethylene glycol (EG); propylene glycol (PG); dimethyl-sulfoxide (DMSO); and glycerol (G)) for durations of 5, 15, and 30 minutes at room temperature (), and immersed in physiological saline supplemented with 20% (v/v) fetal bovine serum for 5 minutes () to remove each CPA. Before, during and after exposure to each CPA, the ATP content of both the COs and the DOs was measured. After removal from each CPA an aliquot of the COs was matured for 442 h, and their nuclear maturation rates were measured up to the metaphase stage of the second meiotic division (the M-II stage). The maturation rates up to the M-II stage were not significantly different between all the groups that were exposed to each CPA for 5 minutes. For 15 and 30 minute exposures, the maturation rates of the COs exposed to PG, DMSO and EG were almost the same as those of the control groups; however, the rates of G group exposed for 15 and 30 minutes were significantly lower (p<0.05) than the control group. These groups were also found to have a decrease in the ATP content of COs and DOs during and after exposure for the same periods (p<0.05). In addition, although the ATP contents of the COs after exposure to EG for any period were the same as the controls, the ATP content of the DOs exposed to EG for any period were significantly lower (p<0.05) than those of the controls. When the ATP content of the COs and DOs of each CPA were compared, the DOs exposed to PG were found to have a significantly greater level (p<0.05) than DOs exposed to G for any duration. In addition, the ATP content of DOs exposed to PG for 30 min and removal was also higher (p<0.05) than when exposed to DMSO for the same period. These findings indicate that PG may be a useful CPA for the cryopreservation of immature porcine oocytes.
Cryoprotectant;Porcine Oocytes;ATP Content;
 Cited by
Agca, Y., J. Liu, A. T. Peter, E. S. Critser and J. K. Critser. 1998. Effect of developmental stage on bovine oocyte plasma membrane water and cryoprotectant permeability characteristics. Mol. Reprod. Dev. 49:408-415 crossref(new window)

Anchordoguy, T. J., A. S. Rudolph, J. F. Carpenter and J. H. Crowe. 1987. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324-331 crossref(new window)

Arav, A., D. Sheshu and M. Mattioli. 1993. Osmotic and cytotoxic study of vitrification of immature bovine oocytes. J. Reprod. Fert. 99:353-358 crossref(new window)

Ashwood-Smith, M. J. 1987. Machanisms of cryoprotectant action. In: Temperature and animal cells (Ed. K. Bowler and B. J. Fuller). Company of Biologist, Cambridge, pp. 395-406

Ba$\check{g}$is, H. and H. Odaman Mercan. 2005. Effect of three different cryoprotectant solutions in solid surface vitrification (SSV) techniques on the development rate of vitrified pronuclearstage mouse embryos. Turk. J. Vet. Anim. Sci. 29:621-627

Brevini, T. A. L., F. Cillo, S. Antonini and F. Gandolfi. 2007. Cytoplasmic remodeling and the acquisition of developmental competence in pig oocytes. Anim. Reprod. Sci. 98:23-38 crossref(new window)

Chian, R. C., M. Kuwayama, L. Tan, J. Tan, O. Kato and T. Nagai. 2004. High survival rate of bovine oocytes matured in vitro following vitrification. J. Reprod. Dev. 50:685-696 crossref(new window)

Coticchio, G., M. A. Bonu, R. Sciajno, E. Sereni, V. Bianchi and A. Borini. 2007. Outlook: truths and myths of oocyte sensitivity to controlled rate freezing. Reprod. BioMed. Online 15:24-30 crossref(new window)

Didion, B. A., D. Pomp, M. J. Martin, G. E. Homanics and C. L. Markert. 1990. Observations on the cooling and cryopreservation of pig oocytes at the germinal vesicle stage. J. Anim. Sci. 68:2803-2810

Downs, S. M. 1993. Factors affecting the resumption of meiotic maturation in mammalian oocytes. Theriogenology 39:65-79 crossref(new window)

Edashige, K., M. Sakamoto and M. Kasai. 2000. Expression of mRNAs of the aquaporin family in mouse oocytes and embryos. Cryobiology 40:171-175 crossref(new window)

Edashige, K. and M. Kasai. 2007. The movement of water and cryoprotectants in mammalian oocytes and embryos and its relevance to cryopreservation. J. Mamm. Ova Res. 24:18-22 crossref(new window)

Edashige, K., S. Ohta, M. Tanaka, T. Kuwano, D. M. Valdez, Jr., T. Hara, B. Jin, S. Takahashi, S. Seki, C. Koshimoto and M. Kasai. 2007. The role of aquaporin 3 in the movement of water and cryoprotectants in mouse morulae. Biol. Reprod. 77:365-375 crossref(new window)

Fabbri, R., E. Porcu, T. Marsella, G. Rocchetta, S. Venturoli and C. Flamigni. 2001. Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum. Reprod. 16:411-416 crossref(new window)

Fahy, G. M., T. H. Lilley, H. Linsdell, M. ST. J. Douglas and H. T. Meryman. 1990. Cryoprotectant toxicity and cryoprotectant toxicity reduction: in search of molecular mechanisms. Cryobiology 27:247-268 crossref(new window)

Fahy, G. M., B. Wowk, J. Wu and S. Paynter. 2004. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22-35 crossref(new window)

Ford, P., J. Merot, A. Jawerbaum, M. A. F. Gimeno, C. Capurro and M. Parisi. 2000. Water permeability in rat oocytes at different maturity stages: aquaporin-9 expression. J. Membrane Biol. 176:151-158 crossref(new window)

Friedler, S., L. C. Giudice and E. J. Lamb. 1988. Cryopreservation of embryos and ova. Fertil. Steril. 49:743-764

Fujihira, T., H. Nagai and Y. Fukui. 2005. Relationship between equilibration times and the presence of cumulus cells, and effect of Taxol treatment for vitrification of in vitro matured porcine oocytes. Cryobiology 51:339-343 crossref(new window)

Fuller, B. J. 2004. Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 25:375-388

Gardner, D. K., C. B. Sheehan, L. Rienzi, M. Katz-Jaffe and M. G. Larman. 2007. Analysis of oocyte physiology to improve cryopreservation procedures. Theriogenology 67:64-72 crossref(new window)

Gupta, M. K., S. J. Uhm and H. T. Lee. 2007. Cryopreservation of immature and in vitro matured porcine oocytes by solid surface vitrification. Theriogenology 67:238-248 crossref(new window)

Herrick, J. R., A. M. Brad and R. L. Krisher. 2006. Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro. Reprod. 131:289-298 crossref(new window)

Huang, W.T. and W. Holtz. 2002. Effects of meiotic stages, cryoprotectants, cooling and vitrification on the cryopreservation of porcine oocytes. Asian-Aust. J. Anim. Sci. 15:485-493

Hunter, R. H. and C. Polge. 1966. Maturation of follicular oocytes in the pig after injection of human chorionic gonadotrophin. J. Reprod. Fertil. 12:525-531 crossref(new window)

Jain, J. K. and R. J. Paulson. 2006. Oocyte cryopreservation. Fertil. Steril. 86(Suppl. 3):1037-1046

Kleinhans, F. W. and P. Mazur. 2007. Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest. Cryobiology 54:212-222 crossref(new window)

Kubota, C., X. Yang, A. Dinnyes, J. Todoroki, H. Yamakuchi, K. Mizoshita, S. Inohae and N. Tabata. 1998. In vitro and in vivo survival of frozen-thawed bovine oocytes after IVF, nuclear transfer, and parthenogenetic activation. Mol. Reprod. Dev. 51:281-286 crossref(new window)

Ledda, S., L. Bogliolo, S. Succu, F. Ariu, D. Bebbere, G. G. Leoni and S. Naitana. 2007. Oocyte cryopreservation: oocyte assessment and strategies for improving survival. Reprod. Fertil. Dev. 19:13-23 crossref(new window)

Leibo, S. P. 2008. Cryopreservation of oocytes and embryos: optimization by theoretical versus empirical analysis. Theriogenology 69:37-47 crossref(new window)

Magnusson, V., W. B. Feitosa, M. D. Goissis, C. Yamada, L. M. T. Tavares, M. E. O. D'A. Assump$\c{c}$$\tilde{a}$o and J. A. Visintin. 2007. Bovine oocyte vitrification: effect of ethylene glycol concentrations and meiotic stages. Anim. Reprod. Sci. 106:265-273 crossref(new window)

Mukaida, T. and M. Kasai. 2004. Cryobiology: slow freezing and vitrification of embryos. In: A laboratory guide to the mammalian embryo (Ed. D. K. Gardner, M. Lane and A. J. Watson). Oxford University Press, Inc., New York, pp. 375-390

Nagano, M., S. Katagiri and Y. Takahashi. 2006. ATP content and maturational/developmental ability of bovine oocytes with various cytoplasmic morphologies. Zygote 14:299-304 crossref(new window)

Otoi, T., S. Tachikawa, S. Kondo, M. Takagi and T. Suzuki. 1994. Developmental competence of bovine oocytes frozen at different cooling rates. Cryobiology 31:344-348 crossref(new window)

Otoi, T., K. Yamamoto, N. Koyama and T. Suzuki. 1995. In vitro fertilization and development of immature and mature bovine oocytes cryopreserved by ethylene glycol with sucrose. Cryobiology 32:455-460 crossref(new window)

Paynter, S. J. and B. J. Fuller. 2007. Cryopreservation of mammalian oocytes. Methods. Mol. Biol. 368:313-324 crossref(new window)

Pedro, P. B., E. Yokoyama, S. E. Zhu, N. Yoshida, D. M. Valdez Jr., M. Tanaka, K. Edashige and M. Kasai. 2005. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. J. Reprod. Dev. 51:235-246 crossref(new window)

Petters, R. M. and K. D. Wells. 1993. Culture of pig embryos. J. Reprod. Fertil. Suppl. 48:61-73

Pickering, S. J., P. R. Braude, M. H. Johnson, A. Cant and J. Currie. 1990. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil. Steril. 54:102-108

Poldelski, V., A. Johnson, S. Wright, V. D. Rosa and R. A. Zager. 2001. Ethylene glycol-mediated tubular injury: identification of critical metabolites and injury pathways. Am. J. Kidney Dis. 38:339-348 crossref(new window)

Rall, W. F. 1987. Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 24:387-402 crossref(new window)

Rittmeyer, I. C. and U. E. Nydegger. 1992. Influence of the cryoprotective agents glycerol and hydroxyethyl starch on red blood cell ATP and 2,3-diphosphoglyceric acid levels. Vox Sang 62:141-145 crossref(new window)

Rojas, C., M. J. Palomo, J. L. Albarracín and T. Mogas. 2004. Vitrification of immature and in vitro matured pig oocytes: study of distribution of chromosomes, microtubules, and actin microfilaments. Cryobiology 49:211-220 crossref(new window)

Russell, D. L. and R. L. Robker. 2007. Molecular mechanisms of ovulation: co-ordination though the cumulus complex. Hum. Reprod. Update 13:289-312 crossref(new window)

Shaw, J. M. and G. M. Jones. 2003. Terminology associated with vitrification and other cryopreservation procedures for oocytes and embryos. Hum. Reprod. Update 9:583-605 crossref(new window)

Shimizu, T. and K. Kouketsu. 1988. Reversible effects of glycerol on the metabolism of platelets kept at room temperature. Cryobiology 25:164-169 crossref(new window)

Stachecki, J. J. and S. M. Willadsen. 2000. Cryopreservation of mouse oocytes using a medium with low sodium content: effect of plunge temperature. Cryobiology 40:4-12 crossref(new window)

Stachecki, J. J., J. Cohen, J. Garrisi, S. Munn$\acute{e}$, C. Burgess and S. M. Willadsen. 2006. Cryopreservation of unfertilized human oocytes. Reprod. BioMed. Online 13:222-227 crossref(new window)

Stojkovic, M., S. A. Machado, P. Stojkovic, V. Zakhartchenko, P. Hutzler, P. B. Gonçalves and E. Wolf. 2001. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol. Reprod. 64:904-909 crossref(new window)

Tharasanit, T., S. Colleoni, G. Lazzari, B. Colenbrander, C. Galli and T. A. E. Stout. 2006. Effect of cumulus morphology and maturation stage on the cryopreservability of equine oocytes. Reprod. 132:759-769 crossref(new window)

Tsuzuki, Y., M. Hisanaga, K. Ashizawa and N. Fujihara. 2001. The effects of dimethyl-sulfoxide and sucrose as a cryoprotectant on the adenosine triphosphate and ultrastructure of bovine oocytes matured in vitro. Asian-Aust. J. Anim. Sci. 14:1353-1359

Tsuzuki, Y., M. Ugajin and K. Ashizawa. 2008. The effect of adding glucose to the maturation medium on the nuclear maturation and ATP content of porcine oocytes. J. Mamm. Ova Res. 25:172-176 crossref(new window)

Van Blerkom, J., P. W. Davis and J. Lee. 1995. ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum. Reprod. 10:415-424

Van der Elst, J., S. Nerinckx and A. C. Van Steirteghem. 1992. In vitro maturation of mouse germinal vesicle-stage oocytes following cooling, exposure to cryoprotectants and ultrarapid freezing: limited effect on the morphology of the second meiotic spindle. Hum. Reprod. 7:1440-1446

Vincent, C., S. J. Pickering and M. H. Johnson. 1990. The hardening effect of dimethylsulphoxide on the mouse zona pellucida requires the presence of an oocyte and is associated with a reduction in the number of cortical granules present. J. Reprod. Fertil. 89:253-259 crossref(new window)

Wani, N. A., A. K. Misra and S. N. Maurya. 2004. Maturation rates of vitrified-thawed immature buffalo (Bubalus bubalis) oocytes: effect of different types of cryoprotectants. Anim. Reprod. Sci. 84:327-335 crossref(new window)

Wu, C., R. Rui, J. Dai, C. Zhang, S. Ju, B. Xie, X. Lu and X. Zheng. 2006. Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes. Mol. Reprod. Dev. 73:1454-1462 crossref(new window)

Yamada, C., H. V. A. Caetano, R. Sim$\tilde{o}$es, A. C. Nicacio, W. B. Feitosa, M. E. O. D'$\acute{A}$. Assump$\c{c}$$\tilde{a}$o and J. A. Visintin. 2007. Immature bovine oocyte cryopreservation: comparison of different associations with ethylene glycol, glycerol and dimethylsulfoxide. Anim. Reprod. Sci. 99:384-388 crossref(new window)

Yavin, S. and A. Arav. 2007. Measurement of essential physical properties of vitrification solutions. Theriogenology 67:81-89 crossref(new window)

Yokoo, M. and E. Sato. 2004. Cumulus-oocyte complex interactions during oocyte maturation. Int. Rev. Cytol. 235:251-291 crossref(new window)

Yu, Z. W. and P. J. Quinn. 1998. Solvation effects of dimethyl sulphoxide on the structure of phospholipid bilayers. Biophysic. Chem. 70:35-39 crossref(new window)