JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Differential Embryo Development among Tibetan Chicken, DRW and Shouguang Chicken Exposed to Chronic Hypoxia
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Differential Embryo Development among Tibetan Chicken, DRW and Shouguang Chicken Exposed to Chronic Hypoxia
Li, Mei; Zhao, Chun-Jiang; Wu, Chang-Xin;
  PDF(new window)
 Abstract
Avian embryos at high altitude are independent of maternal protection against hypoxia, which is contrary to mammals. It is well known that chronic hypoxic exposure at key points can significantly impact on avian development. Tibetan Chicken, a Chinese indigenous breed, living in Tibetan areas with an altitude of 2.2 to 4.1 thousand meters, has an adaptive mechanism to hypoxia. In the present study, fertilized eggs of Tibetan Chicken were incubated under 13% and 21% oxygen concentration. Two lowland chicken breeds, Shouguang Chicken, an indigenous chicken breed in Shandong Province of China, and Dwarf Recessive White Chicken, an imported breed in Beijing, were used as control groups. The embryo mass and some organs such as brain, heart, liver, stomach and eye weight in the three species were measured at Hamburger-Hamilton stage 39, 41, 43 and 45 under hypoxic and normal conditions. The results showed that in hypoxia Tibetan Chicken significantly differed from the two lowland chicken breeds in embryo mass at Hamburger-Hamilton stage 41, 43 and 45 (p<0.01). In particular, Dwarf Recessive White Chicken and Shouguang Chicken showed retarded growth in hypoxic incubation (p<0.01), whereas Tibetan Chicken showed no significant difference between hypoxic and normal conditions (p>0.05). In addition, heart and the other organs showed different susceptibility to hypoxia at the studied stages. In conclusion, chronic hypoxia induced a change in the embryo development of the three different species and Tibetan Chicken showed adaptation to hypoxia. Of note, the embryo developmental physiology of Tibetan Chicken in response to hypoxia will shed light on the process of physiological acclimation or evolutionary adaptation as well as the study of clinical disease.
 Keywords
Adaptation;Chronic Hypoxia;Developmental Physiology;Tibetan Chicken;
 Language
English
 Cited by
 References
1.
Asson-Batres, M. A., M. K. Stock, J. F. Hare and J. Metcalfe. 1989. $O_{2}$ effect on composition of chick embryonic heart and brain. Respir. Physiol. 77(1):101-109 crossref(new window)

2.
Baumann, R., E. A. Haller, U. Schoning and M. Weber. 1986. Hypoxic incubation leads to concerted changes of carbonic anhydrase activity and 2.3-DPG concentration of chick embryo red cells. Dev. Biol. 116(2):548-551 crossref(new window)

3.
Black, J. L. and W. W. Burggren. 2004. Acclimation to hypothermic incubation in developing chicken embryos (Gallus domesticus): II. Hematology and blood $O_{2}$ transport. J. Exp. Biol. 207(Pt 9): 1553-1561 crossref(new window)

4.
Burton, G. J. and M. E. Palmer. 1992. Development of the chick chorioallantoic capillary plexus under normoxic and normobaric hypoxic and hyperoxic conditions: a morphometric study. J. Exp. Zool. 262(3):291-298 crossref(new window)

5.
Chan, T. and W. Burggren. 2005. Hypoxic incubation creates differential morphological effects during specific developmental critical windows in the embryo of the chicken (Gallus gallus). Respir. Physiol. Neurobiol. 145(2-3):251-263 crossref(new window)

6.
Craig Patrick Black, G. K. S. 1980. Oxygen transport in the avian egg at high altitude. Am. Zoologist 20(2):461-468

7.
Crossley, D. A. and J. Altimiras. 2005. Cardiovascular development in embryos of the American alligator Alligator mississippiensis: effects of chronic and acute hypoxia. J. Exp. Biol. 208(Pt 1):31-39 crossref(new window)

8.
Crossley, D. A., B. P. Bagatto, E. M. Dzialowski and W. W. Burggren. 2003. Maturation of cardiovascular control mechanisms in the embryonic emu (Dromiceius novaehollandiae). J. Exp. Biol. 206(Pt 15):2703-2710 crossref(new window)

9.
Cynthia Carey, F. L.-V., Olga Dunin-Borkowski, Theresa L. Bucher, Grimaneza de la Torre, Daniel Espinoza and Carlos Monge. 1989. Variation in eggshell characteristics and gas exchange of montane and lowland coot eggs. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 159(4):389-400 crossref(new window)

10.
Dragon, S. and R. Baumann. 2003. Hypoxia, hormones, and red blood cell function in chick embryos. News Physiol. Sci. 18: 77-82

11.
Dragon, S., C. C. Martin K. and R. Baumann. 1999. Effect of high altitude and in vivo adenosine/$\beta$-adrenergic receptor blockade on ATP and 2,3-BPG concentrations in red blood cells of avian embryos. J. Exp. Biol. 202(20):2787-2795

12.
Dzialowski, E. M., D. von Plettenberg, N. A. Elmonoufy and W. W. Burggren. 2002. Chronic hypoxia alters the physiological and morphological trajectories of developing chicken embryos. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 131(4):713-724 crossref(new window)

13.
Giussani, D. A., R. A. Riquelme, E. .M. Sanhueza, M. A. Hanson, C. E. Blanco and A. J. Llanos. 1999. Adrenergic and vasopressinergic contributions to the cardiovascular response to acute hypoxaemia in the llama fetus. J. Physiol. 515(Pt 1): 233-241 crossref(new window)

14.
Giussani, D. A., J. A. Spencer, P. J. Moore, L. Bennet and M. A. Hanson. 1993. Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J. Physiol. 461:431-449

15.
Giussani, D. A., C. E. Salinas, M. Villena and C. E. Blanco. 2007. The role of oxygen in prenatal growth: studies in the chick embryo. J. Physiol. 585(Pt 3):911-917 crossref(new window)

16.
Hamburger, V. and H. L. Hamilton. 1951. A series of normal stages in the development of the chick embryo. J. Morphol. 88: 49-92 crossref(new window)

17.
Hass, J. D., E. A. Frongillo Jr, C. D. Stepick, J. L. Beard and L. Hurtado. 1980. Altitude, ethnic and sex differences in birth weight and length in Bolivia. Hum. Biol. 52(3):459-477 crossref(new window)

18.
Hochachka, P. W., J. L. Rupert and C. Monge. 1999. Adaptation and conservation of physiological systems in the evolution of human hypoxia tolerance. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 124(1):1-17 crossref(new window)

19.
Jaffee, O. C. 1974. The effects of moderate hypoxia and moderate hypoxia plus hypercapnea on cardiac development in chick embryos. Teratol. 10(3):275-281 crossref(new window)

20.
Jansson, T. and G. W. Lambert. 1999. Effect of intrauterine growth restriction on blood pressure, glucose tolerance and sympathetic nervous system activity in the rat at 3-4 months of age. J. Hypertens. 17(9):1239-1248 crossref(new window)

21.
Leon-Velarde, F. and C. C. Monge. 2004. Avian embryos in hypoxic environments. Respir. Physiol. Neurobiol. 141(3): 331-343 crossref(new window)

22.
Mahmoud, K. Z. and A. M. Yaseen. 2005. Effect of feed withdrawal and heat acclimatization on stress responses of male broiler and layer-type chickens (Gallus gallus domesticus). Asian-Aust. J. Anim. Sci. 18(10):1445-1450

23.
Meuer, H. J., V. Hartmann and S. Jopp. 1992. Tissue $PO_{2}$ and growth rate in early chick embryos. Respir. Physiol. 90(2): 227-237 crossref(new window)

24.
Miller, S. L., L. R. Green, D. M. Peebles, M. A. Hanson and C. E. Blanco. 2002. Effects of chronic hypoxia and protein malnutrition on growth in the developing chick. Am. J. Obstet Gynecol. 186(2):261-267 crossref(new window)

25.
Moore, L. G. 1990. Maternal O2 transport and fetal growth in Colorado, Peru and Tibet high-altitude residents. Am. J. Hum. Biol. 2:627-637 crossref(new window)

26.
Mulder, A. L., A. Miedema, J. G. De Mey, D. A. Giussani and C. E. Blanco. 2002. Sympathetic control of the cardiovascular response to acute hypoxemia in the chick embryo. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282(4):R1156-1163

27.
Mulder, A. L., J. C. van Golde, F. W. Prinzen and C. E. Blanco. 1998. Cardiac output distribution in response to hypoxia in the chick embryo in the second half of the incubation time. J Physiol. 508(Pt 1):281-287

28.
Piiper, J., H. Tazawa, A. Ar and H. Rahn. 1980. Analysis of chorioallantoic gas exchange in the chick embryo. Respir. Physiol. 39(3):273-284 crossref(new window)

29.
Richards, M. P., M. K. Stock and J. Metcalfe. 1991. Effects of brief hypoxia and hyperoxia on tissue trace element levels in the developing chick embryo. Magnes Trace Elem. 10(5-6): 305-320

30.
Rouwet, E. V., A. N. Tintu, M. W. Schellings, M. van Bilsen, E. Lutgens, L. Hofstra, D. W. Slaaf, G. Ramsay and F. A. Le Noble. 2002. Hypoxia induces aortic hypertrophic growth, left ventricular dysfunction, and sympathetic hyperinnervation of peripheral arteries in the chick embryo. Circulation 105(23):2791-2796 crossref(new window)

31.
Ruijtenbeek, K., L. C. Kessels, J. G. De Mey and C. E. Blanco. 2003. Chronic moderate hypoxia and protein malnutrition both induce growth retardation, but have distinct effects on arterial endothelium-dependent reactivity in the chicken embryo. Pediatr. Res. 53(4):573-579 crossref(new window)

32.
Ruijtenbeek, K., F. A. le Noble, G. M. Janssen, C. G. Kessels, G. E. Fazzi, C. E. Blanco and J. G. De Mey. 2000. Chronic hypoxia stimulates periarterial sympathetic nerve development in chicken embryo. Circulation 102(23):2892-2897

33.
Stock, M. K. and J. Metcalfe. 1987. Modulation of growth and metabolism of the chick embryo by a brief (72-h) change in oxygen availability. J. Exp. Zool. Suppl 1:351-356

34.
Strick, D. M., R. L. Waycaster, J. P. Montani, W. J. Gay and T. H. Adair. 1991. Morphometric measurements of chorioallantoic membrane vascularity: effects of hypoxia and hyperoxia. Am. J. Physiol. 260(4 Pt 2):H1385-389

35.
Villamor, E., C. G. Kessels, K. Ruijtenbeek, R. J. van Suylen, J. Belik, J. G. de Mey and C. E. Blanco. 2004. Chronic in ovo hypoxia decreases pulmonary arterial contractile reactivity and induces biventricular cardiac enlargement in the chicken embryo. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287(3): R642-651 crossref(new window)

36.
Wangensteen, O. D., H. Rahn, R. R. Burton and A. H. Smith. 1974. Respiratory gas exchange of high altitude adapted chick embryos. Respir. Physiol. 21(1):61-70 crossref(new window)

37.
Wu, Ch. X., H. Zhang and X. Gou. 2005. Automatization Hypoxia Simulation hatching. China Patent, ZL200420066829.3, Beijing

38.
Xu, L. J. and J. P. Mortola. 1989. Effects of hypoxia or hyperoxia on the lung of the chick embryo. Can. J. Physiol. Pharmaco. l 67(5):515-519

39.
YC, K. 1993. Physiological effects of hypoxia on metabolism and growth of turtle embryos. Respir. Physiol. Neurobiol. 92(2):127-138

40.
Yu Jimian and Endong Bao. 2008. Effect of acute heat stress on heat shock protein 70 and its corresponding mRNA expression in the heart, liver, and kidney of broils. Asian-Aust. J. Anim. Sci. 21(8):1116-1126

41.
Zhang Hao. 2005. Physiological mechanism of adaptability to highland hypoxia and utilizing by crossing in tibetan chicken. Ph.D. Thesis, China Agricultural University, Beijing, China