Advanced SearchSearch Tips
Simplified Slow Freezing Program Established for Effective Banking of Embryonic Stem Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Simplified Slow Freezing Program Established for Effective Banking of Embryonic Stem Cells
Kim, Gil Ah; Lee, Seung Tae; Lee, Eun Ju; Choi, Jung Kyu; Lim, Jeong Mook;
  PDF(new window)
This study was designed to simplify a cryopreservation program for embryonic stem cells (ESCs) by selection of cooling method and cryoprotectant. Commercially available mouse E14 embryonic stem cells (ESCs) were cryopreserved with various protocols, and morphology and viability of the frozen-thawed ESCs and their reactive oxygen species (ROS) production were subsequently monitored. Post-thaw colony-formation of ESCs was detected only after a slow freezing using dimethyl sulfoxide (DMSO) by stepwise placement of a freezing container into a deep freezer and subsequently into - liquid nitrogen, while no proliferation was detected after vitrification. When the simplified protocol was employed, the replacement of DMSO with a mixture of DMSO and ethylene glycol (EG) further improved the post-thaw survival. ROS generation in ESCs frozen-thawed with the optimized protocol was not increased compared with non-frozen ESCs. The use of fresh mouse embryonic fibroblasts as feeder cells for post-thaw subculture did not further increase post-thaw cell viability. In conclusion, a simplified slow-freezing program without employing programmable freezer but using DMSO and EG was developed which maintains cell viability and colony-forming activity of ESCs during post-thaw subculture.
Mouse;Embryonic Stem Cells;Vitrification;Slow Freezing;Cryoprotectant;Reactive Oxygen Species;
 Cited by
Amorim, C. A., D. Rondina, A. P. Rodrigues, S. H. Costa, P. B. Goncalves, J. R. de Figueiredo and A. Giorgetti. 2003. Isolated ovine primordial follicles cryopreserved in different concentrations of ethylene glycol. Theriogenol. 60:735-742 crossref(new window)

Ball, B. A. and A. Vo. 2001. Osmotic tolerance of equine spermatozoa and the effects of soluble cryoprotectants on equine sperm motility, viability, and mitochondrial membrane potential. J. Androl. 22:1061-1069

Baran, S. W. and C. B. Ware. 2007. Cryopreservation of rhesus macaque embryonic stem cells. Stem Cells Dev. 16:339-344 crossref(new window)

Cho, M., M. Jang, E. J. Lee, J. Y. Han and J. M. Lim. 2006. An alternative method of deriving embryonic stem cell-like clones by aggregation of diploid cells with tetraploid embryos. Fertil. Steril. 85:1103-1110 crossref(new window)

Freeman, B. A. and J. D. Crapo. 1982. Biology of disease: free radicals and tissue injury. Lab. Invest. 47:412-426

Freshney, R. 1994. Culture of animal cells, 3rd Ed. Wiley-Liss Press, New York, New York

Fujioka, T., K. Yasuchika, Y. Nakamura, N. Nakatsuji and H. Suemori. 2004. A simple and efficient cryopreservation method for primate embryonic stem cells. Int. J. Dev. Biol. 48:1149-1154 crossref(new window)

Gearhart, J. 1998. New potential for human embryonic stem cells. Sci. 282:1061-1062 crossref(new window)

Ha, S. Y., B. C. Jee, C. S. Suh, H. S. Kim, S. K. Oh, S. H. Kim and S. Y. Moon. 2005. Cryopreservation of human embryonic stem cells without the use of a programmable freezer. Hum. Reprod. 20:1779-1785 crossref(new window)

Hancock, J. T., R. Desikan and S. J. Neill. 2001. Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans. 29:345-350 crossref(new window)

Katkov, II, M. S. Kim, R. Bajpai, Y. S. Altman, M. Mercola, J. F. Loring, A. V. Terskikh, E. Y. Snyder and F. Levine. 2006. Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells. Cryobiol. 53:194-205 crossref(new window)

Kusuda, S., T. Teranishi and N. Koide. 2002. Cryopreservation of chum salmon blastomeres by the straw method. Cryobiol. 45:60-67 crossref(new window)

Ludwig, T. E., M. E. Levenstein, J. M. Jones, W. T. Berggren, E. R. Mitchen, J. L. Frane, L. J. Crandall, C. A. Daigh, K. R. Conard, M. S. Piekarczyk, R. A. Llanas and J. A. Thomson. 2006. Derivation of human embryonic stem cells in defined conditions. Nat. Biotechnol. 24:185-187 crossref(new window)

Mitsui, K., Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami, K. Takahashi, M. Maruyama, M. Maeda and S. Yamanaka. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631-642 crossref(new window)

Miyamoto, Y., S. Suzuki, K. Nomura and S. Enosawa. 2006. Improvement of hepatocyte viability after cryopreservation by supplementation of long-chain oligosaccharide in the freezing medium in rats and humans. Cell Transplant 15:911-919 crossref(new window)

Puck, T. T. and P. I. Marcus. 1955. A rapid method for viable cell titration and clone production with hela cells in tissue culture: The use of X-irradiated cells to supply conditioning factors. Proc. Natl. Acad. Sci. USA. 41:432-437 crossref(new window)

Reubinoff, B. E., M. F. Pera, G. Vajta and A. O. Trounson. 2001. Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum. Reprod. 16:2187-2194 crossref(new window)

Robertson, E. J. 1987. Embryo-derived stem cell lines. In: Teratocarcinomas and embryonic stem cells: A practical approach (Ed. E. J. Robertson). IRL Press, Oxford, UK. pp. 71-112

Roca, J., M. A. Gil, M. Hernandez, I. Parrilla, J. M. Vazquez and E. A. Martinez. 2004. Survival and fertility of boar spermatozoa after freeze-thawing in extender supplemented with butylated hydroxytoluene. J. Androl. 25:397-405

Suemori, H., K. Yasuchika, K. Hasegawa, T. Fujioka, N. Tsuneyoshi and N. Nakatsuji. 2006. Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by enzymatic bulk passage. Biochem. Biophys. Res. Commun. 345:926-932 crossref(new window)

Suzukawa, K., K. Miura, J. Mitsushita, J. Resau, K. Hirose, R. Crystal and T. Kamata. 2000. Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J. Biol. Chem. 275:13175-13178 crossref(new window)

Ware, C. B., A. M. Nelson and C. A. Blau. 2005. Controlled-rate freezing of human ES cells. Biotechniques 38:879-883 crossref(new window)

Yang, B. C., G. S. Im, W. K. Chang, Y. K. Lee, S. J. Oh, D. I. Jin, K. S. Im and C. K. Lee. 2003. Survival and in vitro development of immature bovine oocytes cryopreserved by vitrification. Asian-Aust. J. Anim. Sci. 16:23-28

Yang, P. F., T. C. Hua, H. C. Tsung, Q. K. Cheng and Y. L. Cao. 2005. Effective cryopreservation of human embryonic stem cells by programmed freezing. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China. pp. 482-485

Yi, Y. J., Y. A. Kwon, H. J. Ko and C. S. Park. 2002. Effects of diluent component, freezing rate, thawing time and thawing temperature on acrosome morphology and motility of frozenthawed boar sperm. Asian-Aust. J. Anim. Sci. 15:1553-1558

Ying, Q. L., J. Nichols, I. Chambers and A. Smith. 2003. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281-292 crossref(new window)

Young, H., D. Morrison, J. Martin and P. Lucas. 1991. Cryopreservation of embryonic chick myogenic lineagecommitted stem cells. Meth. Cell Sci. 13:275-283

Zhao, J., H. N. Hao, R. L. Thomas and W. D. Lyman. 2001. An efficient method for the cryopreservation of fetal human liver hematopoeitic progenitor cells. Stem Cells 19:212-218 crossref(new window)

Zhou, C. Q., Q. Y. Mai, T. Li and G. L. Zhuang. 2004. Cryopreservation of human embryonic stem cells by vitrification. Chin. Med. J. (Engl) 117:1050-1055