Advanced SearchSearch Tips
Effects of Daidzein on Testosterone Synthesis and Secretion in Cultured Mouse Leydig Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Daidzein on Testosterone Synthesis and Secretion in Cultured Mouse Leydig Cells
Zhang, Liuping; Cui, Sheng;
  PDF(new window)
The objective of this work was to study the direct effects of daidzein on steroidogenesis in cultured mouse Leydig cells. Adult mouse Leydig cells were purified by Percoll gradient centrifugation, and the cell purity was determined using a -hydroxysteroid dehydrogenase (-HSD) staining method. The purified Leydig cells were exposed to different concentrations ( M to M) of daidzein for 24 h under basal and human chorionic gonadotropin (hCG)-stimulated conditions. The cell viability and testosterone production were determined, and the related mechanisms of daidzein action were also evaluated using the estrogen receptor antagonist ICI 182,780 and measuring the mRNA levels of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), and -HSD-1 involved in testosterone biosynthesis. The results revealed that daidzein did not influence cell viability. Daidzein increased both basal and hCG-stimulated testosterone production in a dose-dependent manner, and this effect was statistically significant at concentrations of M and M daidzein (p<0.05). ICI 182,780 had no influence on daidzein action. RTPCR results revealed that M and M daidzein did not exert any obvious influence on the mRNA level of P450scc in Leydig cells. However, in the presence of hCG, these concentrations of daidzein significantly increased the StAR and -HSD-1 mRNA levels (p<0.05), but in the absence of hCG, only M and M daidzein up-regulated the StAR and -HSD-1 mRNA expression (p<0.05), respectively. These results suggest that daidzein has direct effect on Leydig cells. Daidzein-induced increase of testosterone production is probably not mediated by the estrogen receptor but correlates with the increased mRNA levels of StAR and -HSD-1.
Daidzein;Testosterone;StAR;P450scc;-HSD-1;Mouse Leydig Cells;
 Cited by
Effects of Norepinephrine and Acetylcholine on the Development of Cultured Leydig Cells in Mice, Journal of Biomedicine and Biotechnology, 2012, 2012, 1110-7251, 1  crossref(new windwow)
Potential Risk of Isoflavones: Toxicological Study of Daidzein Supplementation in Piglets, Journal of Agricultural and Food Chemistry, 2015, 63, 16, 4228  crossref(new windwow)
Akingbemi, B. T., R. Ge, C. S. Rosenfeld, L. G. Newton, D. O. Hardy, J. F. Catterall, D. B. Lubahn, K. S. Korach and M. P. Hardy. 2003. Estrogen receptor-alpha gene deficiency enhances androgen biosynthesis in the mouse Leydig cell. Endocrinol. 144:84-93 crossref(new window)

Akingbemi, B. T., T. D. Braden, B. W. Kemppainen, K. D. Hancock, J. D. Sherrill, S. J. Cook, X. He and J. G. Supko. 2007. Exposure to phytoestrogens in the perinatal period affects androgen secretion by testicular Leydig cells in the adult rat. Endocrinol. 148:4475-4488 crossref(new window)

Anderson, J. J., M. S. Anthony, J. M. Cline, S. A. Washburn and S. C. Garner. 1999. Health potential of soy isoflavones for menopausal women. Public. Health. Nutr. 2:489-504

Anthony, M. S., T. B. Clarkson, C. L. Jr. Hughes, T. M. Morgan and G. L. Burke. 1996. Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J. Nutr. 126:43-50

Arshami, J. and K. Cheng. 2007. Effect of rc mutation on semen characteristics, spermatogenic tissues and testosterone profile in blind rhode island red cockerels. Asian-Aust. J. Anim. Sci. 20:701-705

Barnes, S. and T. G. Peterson. 1995. Biochemical targets of isoflavone genistein in tumor cell lines. Proc. Soc. Exp. Biol. Med. 208:103-108

Borriello, S. P., K. D. Setchell, M. Axelson and A. M. Lawson. 1985. Production and metabolism of lignans by the human faecal flora. J. Appl. Bacteriol. 58:37-43

Chemes, H., S. Cigorraga, C. Bergadá, H. Schteingart, R. Rey and E. Pellizzari. 1992. Isolation of human Leydig cell mesenchymal precursors from patients with the androgen insensitivity syndrome: testosterone production and response to human chorionic gonadotropin stimulation in culture. Biol. Reprod. 46:793-801 crossref(new window)

Cherradi, N., M. F. Rossier, M. B. Vallotton, R. Timberg, I. Friedberg, J. Orly, X. J. Wang, D. M. Stocco and A. M. Capponi. 1997. Submitochondrial distribution of three key steroidogenic proteins (steroidogenic acute regulatory protein and cytochrome P450scc and 3$\beta$-hydroxysteroid dehydrogenase isomerase enzymes) upon stimulation by intracellular calcium in adrenal glomerulosa cells. J. Biol. Chem. 272:7899-7907 crossref(new window)

Choi, J., J. Song, Y. M. Choi, D. J. Jang, E. Kim, I. Kim and K. M. Chee. 2006. Daidzein modulations of apolipoprotein B and fatty acid synthase mRNA expression in chick liver vary depending on dietary protein levels. Asian-Aust. J. Anim. Sci. 19:236-244

Falkenstein, E., H. C. Tillmann, M. Christ, M. Feuring and M. Wehling. 2000. Multiple actions of steroid hormones-a focus on rapid, nongenomic effects. Pharmacol. Rev. 52:513-556 crossref(new window)

Habito, R. C., J. Montalto, E. Leslie and M. J. Ball. 2000. Effects of replacing meat with soyabean in the diet on sex hormone concentrations in healthy adult males. Br. J. Nutr. 84:557-563 crossref(new window)

Hall, J. M., J. F. Couse and K. S. Korach. 2001. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J. Biol. Chem. 276:36869-36872 crossref(new window)

Hilscherova, K., P. D. Jones, T. Gracia, J. L. Newsted, X. Zhang, J. T. Sanderson, R. M. Yu, R. S. Wu and J. P. Giesy. 2004. Assessment of the effects of chemicals on the expression of ten steroidogenic genes in the H295R cell line using real-time PCR. Toxicol. Sci. 81:78-89 crossref(new window)

Jiang, S. Q., Z. Y. Jiang, Y. C. Lin, P. B. Xi and X. Y. Ma. 2007. Effects of soy isoflavone on performance, meat quality and antioxidative property of male broilers fed oxidized fish oil. Asian-Aust. J. Anim. Sci. 20:1252-1257

Jin, L., S. Zhang, B. G. Burguera, M. E. Couce, R. Y. Osamura, E. Kulig and R. V. Lloyd. 2000. Leptin and leptin receptor expression in rat and mouse pituitary cells. Endocrinol. 141:333-339 crossref(new window)

Kelce, W. R. 1994. Buthionine sulfoximine protects the viability of adult rat Leydig cells exposed to ethane dimethanesulfonate. Toxicol. Appl. Pharm. 125:237-246 crossref(new window)

Klinefelter, G. R., P. F. Hall and L. L. Ewing. 1987. Effect of luteinizing hormone deprivation in situ on steroidogenesis of rat Leydig cells purified by a multi-step procedure. Biol. Reprod. 36:769-783 crossref(new window)

Kwon, S. M., S. I. Kim, D. C. Chun, N. H. Cho, B. C. Chung, B. W. Park and S. J. Hong. 2001. Development of rat prostatitis model by oral administration of isoflavone and its characteristics. Yonsei. Med. J. 42:395-404

Liu, H., C. Zhang, C. Ge and J. Liu. 2007. Effects of daidzein on mRNA expression of gonadotropin receptors and P450 aromatase in ovarian follicles of white silky fowls. Asian-Aust. J. Anim. Sci. 20:1827-1831

Losel, R. M., E. Falkenstein, M. Feuring, A. Schultz, H. C. Tillmann, K. Rossol-Haseroth and M. Wehling. 2003. Nongenomic steroid action: controversies, questions, and answers. Physiol. Rev. 83:965-1016

Lund, T. D., D. J. Munson, M. E. Haldy, K. D. Setchell, E. D. Lephart and R. J. Handa. 2004. Equol is a novel anti-androgen that inhibits prostate growth and hormone feedback. Biol. Reprod. 70:1188-1195 crossref(new window)

Messina, M. J., V. Persky, K. D. Setchell and S. Barnes. 1994. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr. Cancer. 21:113-131 crossref(new window)

Mitchell, J. H., E. Cawood, D. Kinniburgh, A. Provan, A. R. Collins and D. S. Irvine. 2001. Effect of a phytoestrogen food supplement on reproductive health in normal males. Clin. Sci. 100:613-618 crossref(new window)

Pan, L., X. Xia, Y. Feng, C. Jiang and Y. Huang. 2007. Exposure to the phytoestrogen daidzein attenuates apomorphine-induced penile erection concomitant with plasma testosterone level reduction in dose-and time-related manner in adult rats. Urology 70:613-617 crossref(new window)

Pan, L., X. Xia, Y. Feng, C. Jiang, Y. Cui and Y. Huang. 2008. Exposure of juvenile rats to phytoestrogen daidzein impairs erectile function in a dose-related manner at adulthood. J. Androl. 29:55-62 crossref(new window)

Payne, A. H. and D. B. Hales. 2004. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 25:947-970 crossref(new window)

Perry, D. L., J. M. Spedick, T. P. McCoy, M. R. Adams, A. A. Franke and J. M. Cline. 2007. Dietary soy protein containing isoflavonoids does not adversely affect the reproductive tract of male cynomolgus macaques (Macaca fascicularis). J. Nutr. 137:1390-1394

Sanderson, J. T. 2006. The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol. Sci. 94:3-21 crossref(new window)

Setchell, K. D. R. and H. Adlercreutz. 1988. Mammalian lignans and phytoestrogens: recent studies on their formation, metabolism and biological role in health and disease. In: Role of the gut flora in toxicity and cancer (Ed. I. R. Rowland). Academic Press, London. pp. 315-345

Stocco, D. M. and B. J. Clark. 1996. Regulation of the acute production of steroids in steroidogenic cells. Endocr. Rev. 17:221-244

Stocco, D. M. 1998. Recent advances in the role of StAR. Rev. Reprod. 3:82-85 crossref(new window)

Tennant, J. R. 1964. Evaluation of the trypan blue technique for determination of cell viability. Transplantation 2:685-694 crossref(new window)

Toda, T., T. Uesugi, K. Hirai, H. Nukaya, K. Tsuji and H. Ishida. 1999. New 6-O-acyl isoflavone glycosides from soybeans fermented with Bacillus subtilis (natto). I. 6-O-succinylated isoflavone glycosides and their preventive effects on bone loss in ovariectomized rats fed a calcium-deficient diet. Biol. Pharm. Bull. 22:1193–1201

Walsh, L. P., D. R. Webster and D. M. Stocco. 2000. Dimethoate inhibits steroidogenesis by disrupting transcription of the steroidogenic acute regulatory (StAR) gene. J. Endocrinol. 167:253-263 crossref(new window)

Wang, G., X. Zhang, Z. Han, Z. Liu and W. Liu. 2002. Effects of daidzein on body weight gain, serum IGF-I level and cellular immune function in intact male piglets. Asian-Aust. J. Anim. Sci. 15:1066-1070

Weber, K. S., K. D. R. Setchell, D. M. Stocco and E. D. Lephart. 2001. Dietary soy-phytoestrogens decrease testosterone levels and prostate weight without altering LH, prostate 5α-reductase or testicular steroidogenic acute regulatory peptide levels in adult male Sprague–Dawley rats. J. Endocrinol. 170:591-599 crossref(new window)

Wehling, M. 1997. Specific, nongenomic actions of steroid hormones. Annu. Rev. Physiol. 59:365-393 crossref(new window)

Wisniewski, A. B., S. L. Klein, Y. Lakshmanan and J. P. Gearhart. 2003. Exposure to genistein during gestation and lactation demasculinizes the reproductive system in rats. J. Urology. 169:1582-1586 crossref(new window)

Woclawek-Potocka, I., T. J. Acosta, A. Korzekwa, M. M. Bah, M. Shibaya, K. Okuda and D. J. Skarzynski. 2005. Phytoestrogens modulate prostaglandin production in bovine endometrium: cell type specificity and intracellular mechanisms. Exp. Biol. Med. 230:326-333

Zhao, L., Q. Chen and R. D. Brinton. 2002. Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons. Exp. Biol. Med. 227:509-519 crossref(new window)