JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Kinetics of Chemical Properties and Microbial Quantity in Soil Amended with Raw and Processed Pig Slurry
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Kinetics of Chemical Properties and Microbial Quantity in Soil Amended with Raw and Processed Pig Slurry
Suresh, A.; Choi, Hong L.; Zhukun, Zhukun;
  PDF(new window)
 Abstract
Pig slurry is a good soil amendment not only because of its high organic matter content, but also because of its ability to provide various nutrients. The objective of this study was to estimate the influence of raw and processed pig slurry application on pot soil over chemical fertilizer and non-amended control soil. Change in the chemical parameters (pH, organic matter (OM), organic carbon (OC), macro and micronutrients) and microbial mass of the treated soils were monitored over 30 to 90 days. Pot soil was treated with the recommended dose of pig slurry and chemical fertilizer, and was sampled after 30, 60 and 90 days of incubation. The least significanct difference (p<0.05) was observed on Fe, Cu, Zn, available P and K between treatments. All treatments increased N, P and K content and microbial mass of soil over control soil. Interestingly, no significant effects were detected on OM, OC, total bacteria, actinomycetes and fungi mass in soil irrespective of treatments given. However fungal and bacterial counts, as well as available nutrients, were found to be higher in processed slurry (PS)-treated soil compared to other soils. In general a significant correlation existed between the fungal count and OM, OC, Zn, T Kjeldahl N (TKN), available P and K of soil. A strong negative correlation was observed between pH and Fe in soil. This study clearly demonstrated that the use of processed manure as a fertilizer could be a key for sustainable livestock agriculture.
 Keywords
Pig Slurry;Chemical Fertilizer;Nutrients;Bacteria;Actinomycetes;Fungi;
 Language
English
 Cited by
 References
1.
Allison, L. E. 1965. Organic carbon. In: Methods of soil analysis part 2 -Chemical and microbiological properties (Ed. C. A. Black, D. Evans, J. L. White, L. E. Ensiminger, F. E. Clark, and R. C. Dinauer). Soil Science Society of America, Madison, WI. pp. 367-378

2.
Araujo, A. S. F. and R. T. R. Monteiro. 2006. Microbial biomass and activity in a Brazilian soil amended with untreated and composted textile sludge. Chemosphere 64:1043-1046 crossref(new window)

3.
Amberger, A. 1990. Use of organic wastes as fertilizers and its environmental implications. In: Fertilization and the environment (Ed. R. Merckx, H. Vereecken and K. Vlassak). Kluwer Academic Publishers, Londona. pp. 314-329

4.
Bandick, A. K. and R. P. Dick. 1999. Field management effects on soil enzyme activities. Soil Biol. Biochem. 31:1471-1479 crossref(new window)

5.
Berggren, D. and J. Mulder. 1995. The role of organic matter in controlling aluminium solubility in acidic mineral soil horizons. Geochem. Acta. 59:4167-4180 crossref(new window)

6.
Bremmer, J. M. 1996. Nitrogen-total. In: Methods of soil analysis, part 3 (Ed. J. M. Bigham). Chemical Methods, SSSA Book series 5, ASA, Madison, WI. pp. 1085-1121

7.
Cornelissen, J. H. C., R. Aerts, B. Cerabolini, M. J. A. Werger and M. G. A. Van der Heijden. 2001. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129:611-619

8.
Dı´ez, J. A., A. I. De la Torre, M. C. Cartagena, M. Carballo, A. Vallejo and M. J. Mun${\sim}$oz. 2001. Evaluation of the application of pig slurry to an experimental crop using agronomic and ecotoxicological approaches. J. Environ. Qual. 30:2165-2172 crossref(new window)

9.
Diaz-Ravin${\sim}$a, M., M. J. Acea and T. Carballas. 1993. Microbial biomass and its contribution to nutrient concentrations in forest soils. Soil Biol. Biochem. 25:25-31 crossref(new window)

10.
Dick, R. P. 1992. A review: Long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric. Ecosyst. Environ. 40:25-36 crossref(new window)

11.
Dong, K. L. 2000. Utilization of organic wastes for reducing the chemical fertilizers. Working Report, National Institute of Agricultural Science and Technology (NIAST), Korea

12.
Flieûbach, A., R. Martens and H. H. Reber. 1994. Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol. Biochem. 26:1201-1205 crossref(new window)

13.
Gregorich, E. G., B. H. Ellert, C. H. Drury and B. C. Liang. 1996. Fertilization effects on soil organic matter turnover and corn residue carbon storage. Soil Sci. Soc. Am. J. 60:472-476 crossref(new window)

14.
Grignani, C., L. Zavattaro, D. Sacco and S. Monaco. 2007. Production, nitrogen and carbon balance of maize-based forage systems. Eur. J. Agro. 26:442-453 crossref(new window)

15.
Hall, J. E. 1999. Nutrient recycling: the European experience (A review). Asian-Aust. J. Anim. Sci. 12:667-674

16.
Islam, M. A., K. N. Monira, M. J. Alam and M. A. Wahid. 2003. Effect of litter materials on broiler performance and evaluation of manureal value of used litter in late autumn. Asian-Aust. J. Anim. Sci. 16:555-557

17.
Kaku, K., A. Ikeguchi, A. Ogino, T. Osada, M. Hojito and K. Shimada. 2004. Achieving a nitrogen balance for Japanese domestic livestock waste: testing the scenario of planting feed grain in land left fallow. Asian-Aust. J. Anim. Sci. 17:1026-1032

18.
Miller, F. C. 1991. Composting as a process based on the control of ecologically selective factors. In: Soil microbial ecology, applications in agriculture and management (Ed. F. Z. Metting, Jr.). Dekker, New York. pp. 515-544

19.
Moreno, J. L., T. Hernandez and C. Garcia. 1999. Effects of cadmium contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an arid soil. Biol. Fert. Soils 28:230-237 crossref(new window)

20.
Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. In: Methods of soil analysis. Part 2. 2nd Ed. (Ed. A. L. Page). Agron. Monogr. 9. ASA and SSSA. Madison, WI. pp. 539-579

21.
Olsen, S. R. and L. E. Sommer. 1982. Phosphorus. In: Methods of soil analysis. Agronomy vol. 9, Part II. (Ed. A. L. Page, R. H. Miller and D. R. Keeney). Am. Soc. Agron, S.S.S. Am. Madison. WI. pp. 403-430

22.
Ong, H. K., P. C. Pullammanappallil and P. F. Greenfield. 2000. Physical, chemical and biomethanation characteristics of stratified cattle-manure slurry. Asian-Aust. J. Anim. Sci. 13:1593-1597

23.
Pauwels, J. M., E. Van Ranst, M. G. Verloo and Z. A. Mvondo. 1992. Manuel de laboratoire de p$\acute{a}$dologie. A. G. Building, Place du Champ de mars 5, Boîte 57, Bruxelles 1050. Publications Agricoles 28. pp. 191-208

24.
Rahman, S. M. E., M. A. Islam, M. M. Rahman and D. H. Oh. 2008. Effect of cattle slurry on growth, biomass yield and chemical composition of maize fodder. Asian-Aust. J. Anim. Sci. 21:1592-1598

25.
Ranhe, K. 1987. Effects of organic manuring and cropping on soil humus and fertility. In: Agricultural waste management and environmental protection 1 (Ed. E. Welte and I. Szabolcs). Proceedings from 4th International Symposium of CIEC, Brannchweig, Germany. pp. 55-76

26.
Rodriguez, F., C. Guerrero, R. Moral, H. Ayguade and J. Mataix- Beneyto. 2005. Effects of composted and non-composted solid phase of pig slurry on N, P, and K contents in two mediterranean soils. Communications in Soil Sci. Plant Anal. 36:635-647 crossref(new window)

27.
Rutete, B., M. D. Perez-Murcia, A. Perez-Espinosa, R. Moral, J. Morero-Caselles and C. Paredes. 2006. Total and fecal coliforms bacteria persistence in a pig slurry amended soil. Livestock Sci. 102:211-215 crossref(new window)

28.
Sasaki, H., J. Nonaka, K. Otawa, O. Kitazume, R. Asano, T. Sasaki and Y. Nakai. 2009. Analysis of the structure of the bacterial community in the livestock manure-based composting process. Asian-Aust. J. Anim. Sci. 22:113-118

29.
Saviozzi, A., P. Bufalino, R. Levi-Minzi and R. Riffald. 2002. Biochemical activities in a degraded soil restored by two amendments: a laboratory study. Biol. Fert. Soils 35:96-101 crossref(new window)

30.
Selivanovskaya, S. Y., V. Z. Latypova, S. N. Kiyamova and F. K. Alimova. 2001. Use of microbial parameters to assess treatments methods of municipal sewage sludge applied to grey forest soils of Tatarstan. Agric. Ecosyst. Environ. 86:145-153 crossref(new window)

31.
Sharpley, A. N. 2000. Phosphorus availability. In: Hadbook of soil science (Ed. M. E. Sumner). CRC Press, Boca Raton, FL

32.
Sharpley, A. N. and S. J. Smith. 1995. Nitrogen and phosphorus forms in soils receiving manure. Soil Sci. 159:253-258 crossref(new window)

33.
SPSS. 2004. Sigma plot for windows. Version 13.0. Chicago. Ill. SPSS, Inc., USA

34.
Tyler, G. 1981. Heavy metals in soil biology and biochemistry. In: Soil biochemistry, Vol. 5 (Ed. E. A. Paul and J. N. Ladd). Marcel Dekker, New York. pp. 371-414

35.
Van Gestel, M., R. Merckx and K. Valssak. 1993. Microbial biomass responses to soil drying and rewetting the fate of fast and slow growing microorganisms in soils from different climates. Soil Biol. Biochem. 25:109-123 crossref(new window)

36.
Wellington, E. M. H. and I. K. Toth. 1994. Actinomycetes. In: Methods of soil analysis. Part 2. Microbiological and biochemical properties (Ed. R. W. Weaver). SSSA Book Ser. 5. SSSA, Madison, WI. pp. 269-290

37.
Zuberer, D. A. 1994. Recovery and enumeration of viable bacteria. In: Methods of soil analysis. Part 2. Microbiological and biochemical properties (Ed. R. W. Weaver). SSSA Book Ser. 5. SSSA, Madison, WI. pp. 119-144