Advanced SearchSearch Tips
Effect of Permanent Hypoinsulinemia on Appetite, Performance, Carcass Composition, Blood Metabolites and Leptin Concentrations in Lambs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Permanent Hypoinsulinemia on Appetite, Performance, Carcass Composition, Blood Metabolites and Leptin Concentrations in Lambs
Moslemipur, F.; Torbatinejad, N.M.; Khazali, H.; Hassani, S.; Ghoorchi, T.;
  PDF(new window)
Insulin has crucial roles in energy metabolism in all mammals but has been less studied in ruminants. An experiment was conducted to investigate the effects of hypoinsulinemia induction on appetite, performance, carcass composition and blood metabolite levels in sheep. Treatments were intravenous injection of four doses of streptozotocin; 0, 25, 50 and 75 mg/kg BW named C, L, M and H, respectively. Twenty male lambs were divided into four treatment groups. Animals in group H could not continue the experiment because of abnormalities. The duration of the experiment was eight consecutive weeks, and injection was performed at the end of week 3. Feed and water intakes were measured weekly and weight changes of animals were recorded and used for calculation of other growth parameters. Blood samples were collected weekly via venipuncture at fasting and 2.5 h post-prandial and analyzed for hormones and blood metabolites. Results showed a marked hypoinsulinemia in group M with significant decrease in fasted and postprandial insulin concentrations and also fasted leptin concentrations vs. the control group C (p<0.05). Group M showed significant increases in blood glucose, triglycerides, cholesterol, total protein, blood urea nitrogen and ketone body levels vs. group C (p<0.05). After injection, animals in group M showed diabetic hyperphagia and enhanced water intake as compared to group C (p<0.05) but, despite increased feed intake, they did not gain more weight than controls (p<0.05), and consequently, their feed conversion ratio was greater. Protein and fat contents of meat and liver were not significantly different among groups (p>0.05). In conclusion, the results suggested a regulatory role of insulin in energy metabolism of ruminants by exerting two opposing effects; central catabolic and peripheral anabolic.
 Cited by
Air, E. L., S. C. Benoit, K. A. Blake Smith, D. J. Clegg and S. C. Woods. 2002. Acute third ventricular administration of insulin decreases food intake in two paradigms. Pharmacol. Biochem. Behav. 72:423-429 crossref(new window)

Akirav, E. M., O. Chan, K. Inouye, M. C. Riddell, S. G. Matthews and M. Vranic. 2004. Partial leptin restoration increases hypothalamic-pituitary-adrenal activity while diminishing weight loss and hyperphagia in streptozotocin diabetic rats. Metabolism 53:1558-1564 crossref(new window)

Barber, M., B. S. Kasturi, M. E. Austin, K. P. Patel, S. M. J. MohanKumar and P. S. MohanKumar. 2003. Diabetes-induced neuroendocrine changes in rats: Role of brain monoamines, insulin and leptin. Brain Res. 964:128-135 crossref(new window)

Barr, V. A., D. Malide, M. J. Zarnowski, S. I. Taylor and S. W. Cushman. 1997. Insulin stimulates both leptin secretion and production by rat white adipose tissue. Endocrinol. 138:4463-4472 crossref(new window)

Benoit, S. C., E. L. Air, L. M. Coolen, R. Strauss, A. Jackman, D. G. Clegg, R. J. Seeley and S. C. Woods. 2002. The catabolic action of insulin in the brain is mediated by melanocortins. J. Neurosci. 22:9048-9052

Bergman, E. N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70:567-575 crossref(new window)

Boden, G., X. Chen, J. W. Kplaczynski and M. Polansky. 1997. Effects of prolonged hyperinsulinemia on serum leptin in normal human subjects. J. Clin. Invest. 100:1107-1113 crossref(new window)

Breen, L. T., I. M. Conwell and S. L. Wardlaw. 2005. Effects of fasting, leptin and insulin on AGRP and POMC peptide release in the hypothalamus. Brain Res. 1032:1414-1418

Broberger, C. 2005. Brain regulation of food intake and appetite: molecules and networks. J. Intern. Med. 258:301-307 crossref(new window)

Carlon, M. G. and P. J. Campbell. 1993. Intensive insulinterapy and weight gain in IDDM. Diabetes 42:1700-1707 crossref(new window)

Chung, E. R., S. C. Shin and K. Y. Chung. 2008. SNP discovery in the leptin promoter gene and association with meat quality and carcass traits in korean cattle. Asian-Aust. J. Anim. Sci. 21:1689-1695

Foster, L. A., N. K. Ames and R. S. Emery. 1991. Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-I. Physiol. Behav. 50:745-749 crossref(new window)

Gabel, G. and J. Sehested. 1997. SCFA transport in the forestomach of ruminants. Comp. Biochem. Physiol. 118:367-374

Gerozissis, K. 2004. Brain insulin and feeding: a bi-directional communication. Eur. J. Pharmacol. 490:59-70 crossref(new window)

Henry, B. A., J. W. Goding, W. S. Alexander, A. J. Tilbrook, B. J. Canny, F. Dunshea, A. Rao, A. Mansell and I. J. Clarke. 1999. Central administration of leptin to ovariectomized ewes inhibits food intake without affecting the secretion of hormones from pituitary gland: evidence for a dissociation of effects on appetite and neuroendocrine function. Endocrinol. 140:1175-1182 crossref(new window)

Hidaka, S., H. Yoshimatsu, S. Kondou, K. Oka, Y. Tsuruta, H. Sakino, E. Itateyama, H. Noguchi, K. Himeno, K. Okamoto, Y. Teshima, T. Okeda and T. Sakata. 2001. Hypoleptinemia, but not hypoinsulinemia, induced hyperphagia in streptozotocininduced diabetic rat. J. Neurochem. 77:993-1000 crossref(new window)

Higdon III, H. L., P. G. Parnel and J. C. Spitzer. 2001. Streptozotocin-induced pancreatic islet destruction in beef cows. Vet. Pathol. 38:715-720 crossref(new window)

Junod, A., A. E. Lambert, W. Stauffacher and A. E. Renold. 1969. Diabetogenic action of streptozotocin: Relationship of dose to metabolic response. J. Clin. Invest. 48:2129-2139 crossref(new window)

Mamo, J. C., A. M. Snowell and D. L. Topping. 1983. Plasma triacylglycerol secretion in sheep. Paradoxical effects of fasting and alloxan diabetes. Biochem. Biophys. Acta. 753:272-275

Matsunaga, N., N. T. Arakawa, T. Goda, K. T. Nam, A. Ohneda, Y. Sasaki and K. Katoh. 1999. Effects of ruminal infusion of volatile fatty acids on plasma concentration of growth hormone and insulin in sheep. Domest. Anim. Endocrinol. 17:17-27 crossref(new window)

Morris, M. J. and J. M. Pavia. 2004. Increased endogenous noradrenaline and neuropeptide Y release from the hypothalamus of streptozotocin diabetic rats. Brain Res. 1006:100-106 crossref(new window)

Niswender, K. D., D. G. Baskin and M. W. Schwartz. 2004. Insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis. Trend in Endocrinol. Metab. 15:362-369

NRC. 1985. Nutrient requirement of sheep. 6th Rev. Ed. National Academy of Science, Washington, DC

Olivares, V. H. and D. M. Hallford. 1990. Growth and carcass characteristics and serum growth hormone, prolactin and insulin profiles in Debouillet lambs treated with ovine growth hormone and (or) zeranol. J. Anim. Sci. 68:1971-1979

Patel, B. K., J. I. Koenig, L. M. Kaplan and S. C. Hooi. 1998. Increase in plasma leptin and Lep mRNA concentrations by food intake is dependent on insulin. Metabolism 47:603-607 crossref(new window)

Prior, R. L. and S. T. Smith. 1983. Role of insulin in regulating amino acid metabolism in normal and alloxan-diabetic cattle. J. Nutr. 113:1016-1031 crossref(new window)

Ramanathan, T., S. Morita, Y. Huang, K. Shirota, T. Nishimura, X. Zheng and S. N. Hunyor. 2004. Glucose-insulin-potassium solution improves left ventricular energetics in chronic ovine diabetes. Ann. Thorac. Surg. 77:1408-1414 crossref(new window)

Roberts, T. J., M. J. Azain, G. J. Hausman and R. J. Martin. 1994. Interaction of insulin and somatotropin on body weight gain, feed intake, and body composition in rats. Am. J. Physiol. Endocrinol. Metab. 267:E293-E299

Roland, N. and F. A. Caputo. 1985. Voluntary exercise, food intake, and plasma metabolites in streptozotocin-diabetic Syrian hamsters. Physiol. Behav. 34:635-640 crossref(new window)

Sahu, A., C. A. Sninsky and S. P. Kalra. 1997. Evidence that hypothalamic neuropeptide Y gene expression and NPY levels in the paraventricular nucleus increase before the onset of hyperphagia in experimental diabetes. Brain Res. 755:339-342 crossref(new window)

Saltiel, A. R. and C. R. Kahn. 2001. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414:799-806 crossref(new window)

Sambandam, N., M. A. Abrahani, S. Craig, O. Al-Atar, E. Jeon and B. Rodrigues. 2000. Metabolism of VLDL is increased in streptozotocin-induced diabetic rat hearts. Am. J. Physiol. Heart 278:1874-1882

Sano, H. and Y. Terashima. 1991. Insulin responsiveness to glucose and tissue responsiveness to insulin in cows, sheep and pigs. Asian-Aust. J. Anim. Sci. 4:41-45 crossref(new window)

Sano, H., K. Takahashi, K. Ambo and T. Tsuda. 1985. Rates of blood glucose appearance and disappearance during hyperglycemia induced by alloxan in sheep. Tohoko J. Agri. Res. 36:9-15

SAS. 1996. SAS/STAT${\circledR}$ software; Changes and Enhancements through Release 6.11. SAS Inst. Inc., Cary, NC

Sasaki, Y. and H. Takahashi. 1983. Insulin response to secretagogues in sheep exposed to cold. J. Physiol. (London) 334:155-167

Schwartz, M. W., A. J. Sipols, J. L. Marks, G. Sanacora, J. D. White, A. Schurink, S. E. Kahn, D. G. Baskin, S. C. Woods, D. Figlewicz and Jr. Porte. 1992. Inhibition of hypothalamic NPY gene expression by insulin. Endocrinol. 130:3608-3616 crossref(new window)

Schwartz, M. W., S. C. Woods, D. J. Porte, R. J. Seeley and D. G. Baskin. 2000. Central nervous system control of food intake. Nature 404:661-671 crossref(new window)

Shan, T., Y. Wang, J. Gua, X. Chu, J. Liu and Z. Xu. 2008. The body weight-related differences of leptin and neuropeptide Y (NPY) gene expression in pigs. Asian-Aust. J. Anim. Sci. 21:161-166

Sipols, A. J., D. G. Baskin and M. W. Schwartz. 1995. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 44:147-151 crossref(new window)

Smith, J. C. and K. S. Gannon. 1991. Ingestion patterns of food, water, saccharin and sucrose in streptozotocin-induced diabetic rats. Physiol. Behav. 49:189-199 crossref(new window)

Sorensen, A., A. L. Adam, P. A. Findlay, M. Marie, L. Thomas, M. T. Travers and R. G. Vernon. 2002. Leptin secretion and hypothalamic neuropeptide and receptor gene expression in sheep. Am. J. Physiol. Reg. Integ. Comp. Physiol. 282:R1227-R1235

Thomas, L. 1998. Clinical laboratory diagnostics. 1st Ed. Frankfurt: TH-Books Verlagsgesellschaft

Torbay, N., E. F. Bracco, A. Geliebter, I. M. Stewart and S. A Hashim. 1985. Insulin increases body fat despite control of food intake and physical activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 248:R120-R124 crossref(new window)

Willing, A. E., E. K. Walls and H. S. Koopman. 1990. Insulin infusion stimulates daily food intake and body weight gain in diabetic rats. Physiol. Behav. 48:893-898 crossref(new window)

Woods, S. C., E. C. Lotter, L. D. McKay, D. Jr. Porte. 1979. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282:503-505 crossref(new window)

Woods, S. C. and D. J. Porte. 1977. Relationship between plasma and cerebrospinal fluid levels of dogs. Am. J. Physiol. 233:331-334

Woods, S. C. 2005. Signals that influence food intake and body weight. Physiol. Behav. 86:709-716 crossref(new window)