Advanced SearchSearch Tips
Gene Expression Profiling of Liver and Mammary Tissues of Lactating Dairy Cows
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Gene Expression Profiling of Liver and Mammary Tissues of Lactating Dairy Cows
Baik, M.; Etchebarne, B.E.; Bong, J.; VandeHaar, M.J.;
  PDF(new window)
Gene expression profiling is a useful tool for identifying critical genes and pathways in metabolism. The objective of this study was to determine the major differences in the expression of genes associated with metabolism and metabolic regulation in liver and mammary tissues of lactating cows. We used the Michigan State University bovine metabolism (BMET) microarray; previously, we have designed a bovine metabolism-focused microarray containing known genes of metabolic interest using publicly available genomic internet database resources. This is a high-density array of 70mer oligonucleotides representing 2,349 bovine genes. The expression of 922 genes was different at p<0.05, and 398 genes (17%) were differentially expressed by two-fold or more with 222 higher in liver and 176 higher in mammary tissue. Gene ontology categories with a high percentage of genes more highly expressed in liver than mammary tissues included carbohydrate metabolism (glycolysis, glucoenogenesis, propanoate metabolism, butanoate metabolism, electron carrier and donor activity), lipid metabolism (fatty acid oxidation, chylomicron/lipid transport, bile acid metabolism, cholesterol metabolism, steroid metabolism, ketone body formation), and amino acid/nitrogen metabolism (amino acid biosynthetic process, amino acid catabolic process, urea cycle, and glutathione metabolic process). Categories with more genes highly expressed in mammary than liver tissue included amino acid and sugar transporters and MAPK, Wnt, and JAK-STAT signaling pathways. Real-time PCR analysis showed consistent results with those of microarray analysis for all 12 genes tested. In conclusion, microarray analyses clearly identified differential gene expression profiles between hepatic and mammary tissues that are consistent with the differences in metabolism of these two tissues. This study enables understanding of the molecular basis of metabolic adaptation of the liver and mammary gland during lactation in bovine species.
Bovine;Metabolism;Microarray;Gene Expression Profiling;Liver;Mammary Gland;
 Cited by
Adams, T. E., J. A. Hansen, R. Starr, N. A. Nicola, D. J. Hilton and N. Billestrup. 1998. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J. Biol. Chem. 16:1285-1287 crossref(new window)

Binelli, M., W. K. Vanderkooi, L. T. Chapin, M. J. Vandehaar, J. D. Turner, W. M. Moseley and H. A. Tucker. 1995. Comparison of growth hormone-releasing factor and somatotropin: body growth and lactation of primiparous cows. J. Dairy Sci. 78:2129-2139 crossref(new window)

Bionaz, M. and J. J. Loor. 2008. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 31:366 crossref(new window)

Bionaz, M. and J. J. Loor. 2008. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 138:1019-1024

Brennan, K. R. and A. M. Brown. 2004. Wnt proteins in mammary development and cancer. J. Mammary Gland Biol. Neoplasia 9:119-131 crossref(new window)

Chmurzynska, A. 2006. The multigene family of fatty acidbinding proteins (FABPs): function, structure and polymorphism. J. Appl. Genet. 47:39-48

Dahlquist, K. D., N. Salomonis, K. Vranizan, S. C. Lawlor and B. R. Conklin. 2002. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat. Genet. 31:19-20 crossref(new window)

Doniger, S. W., N. Salomonis, K. D. Dahlquist, K. Vranizan, S. C. Lawlor and B. R. Conklin. 2003. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 4:R7 crossref(new window)

Etchebarne, B. E., W. Nobis, M. S. Allen, and M. J. VandeHaar. 2004. Design of a bovine metabolism oligonucleotide gene array. J. Anim. Feed Sci. 13(Suppl. 1):385-388

Evarts, J. L., J. J. Rasweiler, R. R. Behringer, L. Hennighausen and G. W. Robinson. 2004. A morphological and immunohistochemical comparison of mammary tissues from the short-tailed fruit bat (Carollia perspicillata) and the mouse. Biol. Reprod.70:1573-1579 crossref(new window)

Finucane, K. A., T. B. McFadden, J. P. Bond, J. J. Kennelly and F. Q. Zhao. 2008. Onset of lactation in the bovine mammary gland: gene expression profiling indicates a strong inhibition of gene expression in cell proliferation. Funct. Integr. Genomics 8:251-264 crossref(new window)

Fukumoto, H., S. Seino, H. Imura, Y. Seino, R. L. Eddy, Y. Fukushima, M. G. Byers, T. B. Shows and G. I. Bell. 1988. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc. Natl. Acad. Sci. USA 85:5434-5438 crossref(new window)

Furuhashi, M. and G. S. Hotamisligil. 2008. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 7:489-503 crossref(new window)

Hartwell, J. R., M. J. Cecava, B. Miller and S. S. Donkin. 1999. Rumen protected choline and dietary protein for transition cows. J. Dairy Sci. 82 (Suppl. 1):125(Abstr.)

Heid, H. W., M. Schnolzer and T. W. Keenan. 1996. Adipocyte differentiation-related protein is secreted into milk as a constituent of milk lipid globule membrane. Biochem J. 320(Pt 3):1025-1030

Hirsch, D., A. Stahl and H. F. Lodish. 1998. A family of fatty acid transporters conserved from mycobacterium to man. Proc. Natl. Acad. Sci. USA 95:8625-8629 crossref(new window)

Hod, Y., J. S. Cook, S. L. Weldon, J. M. Short, A. Wynshaw-Boris and R. W. Hanson. 1986. Differential expression of the genes for the mitochondrial and cytosolic forms of phosphoenolpyruvate carboxykinase. Ann. NY Acad. Sci. 478:31-45 crossref(new window)

Hood, R. L., E. H. Thompson and C. E. Allen. 1972. The role of acetate, propionate and glucose as substrates for lipogenesis in bovine tissues. Int. J. Biochem. 3:598-606 crossref(new window)

Hunt, C. R., J. H. Ro, D. E. Dobson, H. Y. Min and B. M. Spiegelman. 1986. Adipocyte P2 gene: developmental expression and homology of 5′-flanking sequences among fat cell-specific genes. Proc. Natl. Acad. Sci. USA 83:3786-3790 crossref(new window)

Kanai, Y. and M. A. Hediger. 2004. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch. 447:469-479 crossref(new window)

Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408 crossref(new window)

Martin-Hidalgo, A., L. Huerta, N. Alvarez, G. Alegria, M. del Val Toledo and E. Herrera. 2005. Expression, activity, and localization of hormone-sensitive lipase in rat mammary gland during pregnancy and lactation. J. Lipid Res. 46:658-668 crossref(new window)

Miyoshi, K., J. M. Shillingford, G. H. Smith, S. L. Grimm, K. U. Wagner, T. Oka, J. M. Rosen, G. W. Robinson and L. Hennighausen. 2001. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J. Cell Biol. 155:531-542 crossref(new window)

Moore, J. H. and W. W. Christie. 1979. Lipid metabolism in the mammary gland of ruminant animals. Prog. Lipid Res. 17:347-395 crossref(new window)

Muscher, A., G. Breves and K. Huber. 2008. Modulation of apical Na/P(i) cotransporter type IIb expression in epithelial cells of goat mammary glands. J. Anim. Physiol. Anim. Nutr (Berl). (Epub ahead of print)

Pfaffl, M. W., S. L. Wittmann, H. H. Meyer and R. M. Bruckmaier. 2003. Gene expression of immunologically important factors in blood cells, milk cells, and mammary tissue of cows. J. Dairy Sci. 86:538-545 crossref(new window)

Pulverer, B. J., J. M. Kyriakis, J. Avruch, E. Nikolakaki and J. R. Woodgett. 1991. Phosphorylation of c-jun mediated by MAP kinases. Nature 17:670-674 crossref(new window)

Rudolph, M. C., J. L. McManaman, T. Phang, T. Russell, D. J. Kominsky, N. J. Serkova, T. Stein, S. M. Anderson and M. C. Neville. 2007. Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol. Genomics 28:323-336 crossref(new window)

Shillingford, J. M., D. T. Calvert, R. B. Beechey and D. B. Shennan. 1996. Phosphate transport via Na-Pi cotransport and anion exchange in lactating rat mammary tissue. Exp. Physiol. 81: 273-284

Smith, S. B. and R. L. Prior. 1986. Comparisons of lipogenesis and glucose metabolism between ovine and bovine adipose tissues. J. Nutr. 116:1279-1286

Stahl, A. 2004. A current review of fatty acid transport proteins (SLC27). Pflugers Arch. 447:722-727 crossref(new window)

Stover, P. J. 2004. Nutritional genomics. Physiol. Genomics 16:161-165 crossref(new window)

Subbaramaiah, K., R. Benezra, C. Hudis and A. J. Dannenberg. 2008. Cyclooxygenase-2-derived prostaglandin E2 stimulates Id-1 transcription. J. Biol. Chem. 5:33955-33968 crossref(new window)

Turashvili, G., J. Bouchal, G. Burkadze and Z. Kolar. 2006. Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology 73:213-223 crossref(new window)

Vernon, R. G., A. Faulkner, E. Finley, H. Pollock and E. Taylor. 1987. Enzymes of glucose and fatty acid metabolism of liver, kidney, skeletal muscle, adipose tissue and mammary gland of lactating and non-lactating sheep. J. Anim. Sci. 64:1395-1411

Verrey, F., E. I. Closs, C. A. Wagner, M. Palacin, H. Endou and Y. Kanai. 2004. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch. 447:532-542 crossref(new window)

Wall, E. H., T. L. Auchtung-Montgomery, G. E. Dahl and T. B. McFadden. 2005. Short communication: Short day photoperiod during the dry period decreases expression of suppressors of cytokine signaling in the mammary gland of dairy cows. J. Dairy Sci. 88:3145-3148 crossref(new window)

Weldon, S. L., A. Rando, A. S. Matathias, Y. Hod, P. A. Kalonick, A. Savon, J. S. Cook and R. W. Hanson. 1990. Mitochondrial phosphoenolpyruvate carboxykinase from the chicken. J. Biol. Chem. 265:7308-7317

Winkelman, L. A., M. C. Lucy, T. H. Elsasser, J. L. Pate and C. K. Reynolds. 2008. Short communication: suppressor of cytokine signaling-2 mRNA increases after parturition in the liver of dairy cows. J. Dairy Sci. 91:1080-1086 crossref(new window)

Xu, C., Z. Wang, G. Liu, X. Li, G. Xie and H. Zhang. 2008. Metabolic characteristic of the liver of dairy cows during ketosis based on comparative proteomics. Asian-Aust. J. Anim. Sci. 21:1003-1010

Yamashita, A., H. Nakanishi, H. Suzuki, R. Kamata, K. Tanaka, K. Waku and T. Sugiura. 2007. Topology of acyltransferase motifs and substrate specificity and accessibility in 1-acyl-sn-glycero-3-phosphate acyltransferase 1. Biochim. Biophys. Acta. 1771:1202-1215 crossref(new window)

Zhao, F. Q. and A. F. Keating. 2007. Expression and regulation of glucose transporters in the bovine mammary gland. J. Dairy Sci. 90 Suppl 1:E76-E86