Advanced SearchSearch Tips
Understanding Starch Utilization in the Small Intestine of Cattle
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Understanding Starch Utilization in the Small Intestine of Cattle
Harmon, David L.;
  PDF(new window)
Ruminants possess the capacity to digest very large amounts of starch. However, in many cases diets approach 60% starch and even small inefficiencies present opportunities for energetic losses. Ruminal starch digestion is typically 75-80% of starch intake. On average, 35-60% of starch entering the small intestine is degraded. Of the fraction that escapes small-intestinal digestion, 35-50% is degraded in the large intestine. The low digestibility in the large intestine and the inability to reclaim microbial cells imposes a large toll on post-ruminal digestive efficiency. Therefore, digestibility in the small intestine must be optimized. The process of starch assimilation in the ruminant is complex and remains an avenue by which increases in production efficiency can be gained. A more thorough description of these processes is needed before we can accurately predict digestion occurring in the small intestine and formulate diets to optimize site of starch digestion.
 Cited by
Evaluation of a Nutrition Model in Predicting Performance of Vietnamese Cattle,;;;;;;;;

아세아태평양축산학회지, 2012. vol.25. 9, pp.1237-1247 crossref(new window)
Effect of replacing barley with corn or sorghum grain on rumen fermentation characteristics and performance of Iranian Baluchi lamb fed high concentrate rations, Animal Production Science, 2012, 52, 4, 263  crossref(new windwow)
Regulation of pancreatic exocrine secretion in goats: differential effects of short- and long-term duodenal phenylalanine treatment, Journal of Animal Physiology and Animal Nutrition, 2012, 97, 3, 431  crossref(new windwow)
Leucine markedly regulates pancreatic exocrine secretion in goats, Journal of Animal Physiology and Animal Nutrition, 2013, 98, 1, 169  crossref(new windwow)
Effect of increasing the proportion of dietary concentrate on gastrointestinal tract measurements and brush border enzyme activity in Holstein steers, Journal of Dairy Science, 2017, 100, 6, 4539  crossref(new windwow)
Duodenal infusions of isoleucine influence pancreatic exocrine function in dairy heifers, Archives of Animal Nutrition, 2017, 1477-2817, 1  crossref(new windwow)
Bauer, M. L., D. L. Harmon, D. W. Bohnert, A. F. Branco and G. B. Huntington. 2001a. Influence of alpha-linked glucose on sodium-glucose cotransport activity along the small intestine in cattle. J. Anim. Sci. 79:1917-1924

Bauer, M. L., D. L. Harmon, K. R. McLeod and G. B. Huntington. 1995. Adaptation to small intestinal starch assimilation and glucose transport in ruminants. J. Anim. Sci. 73:1828-1838 crossref(new window)

Bauer, M. L., D. L. Harmon, K. R. McLeod and G. B. Huntington. 2001b. Influence of alpha-linked glucose on jejunal sodiumglucose co-transport activity in ruminants. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 129:577-583 crossref(new window)

Burant, C. F., J. Takeda, E. Brot-Laroche, G. I. Bell and N. O. Davidson. 1992. Fructose transporter in human spermatozoa and small intestine is glut5. J. Biol. Chem. 267: 14523-14526 crossref(new window)

Cheeseman, C. I. 1993. Glut2 is the transporter for fructose across the rat intestinal basolateral membrane. Gastroenterology 105: 1050-1056 crossref(new window)

Chittenden, L. W., D. D. Johnson, G. E. Mitchell, Jr., and R. E. Tucker. 1984. Ovine pancreatic amylase response to form of carbohydrate. Nutr. Rep. Int. 29:1051-1060

Clary, J. J., G. E. Mitchell, Jr., C. O. Little and N. W. Bradley. 1969. Pancreatic amylase activity from ruminants fed different rations. Can. J. Physiol. Pharmacol. 47:161-164

Crooker, B. A. and J. H. Clark. 1986. Preparation of brush border membrane vesicles from fresh and frozen bovine intestine for nutrient uptake studies. J. Dairy Sci. 69:58-70 crossref(new window)

Dunlop, R. H. 1972. Pathogenesis of ruminant lactic acidosis. Adv. Vet. Sci. Comp. Med. 16:259-302

Ferraris, R. P., S. Yasharpour, K. C. Lloyd, R. Mirzayan and J. M. Diamond. 1990. Luminal glucose concentrations in the gut under normal conditions. Am. J. Physiol. 259: G822-G837

Galand, G. 1989. Brush border membrane sucrase-isomaltase, maltase-glucoamylase and trehalase in mammals. Comparative development, effects of glucocorticoids, molecular mechanisms, and phylogenetic implications. Comp. Biochem. Physiol. B. 94:1-11

Harmon, D. L. 1993. Nutritional regulation of postruminal digestive enzymes in ruminants. J. Dairy Sci. 76:2102-2111 crossref(new window)

Harmon, D. L. and K. R. McLeod. 2001. Glucose uptake and regulation by intestinal tissues: Implications and whole-body energetics. J. Anim. Sci. 79(E. Suppl.):E59-E72 crossref(new window)

Hediger, M. A. and D. B. Rhoads. 1994. Molecular physiology of sodium-glucose cotransporters. Physiol. Rev. 74:993-1026

Janes, A. N., T. E. C. Weekes and D. G. Armstrong. 1985. Carbohydrase activity in the pancreatic tissue and small intestine mucosa of sheep fed dried-grass or ground maizebased diets. J. Agric. Sci. Camb. 104:435-443 crossref(new window)

Kellett, G. L. and E. Brot-Laroche. 2005. Apical glut2: A major pathway of intestinal sugar absorption. Diabetes 54:3056-3062 crossref(new window)

Kellett, G. L. and P. A. Helliwell. 2000. The diffusive component of intestinal glucose absorption is mediated by the glucoseinduced recruitment of glut2 to the brush-border membrane. Biochem. J. 350 Pt 1:155-162 crossref(new window)

Kreikemeier, K. K. and D. L. Harmon. 1995. Abomasal glucose, maize starch and maize dextrin infusions in cattle: Small intestinal disappearance, net portal glucose flux and ileal oligosaccharide flow. Br. J. Nutr. 73:763-772 crossref(new window)

Kreikemeier, K. K., D. L. Harmon, R. T. Brandt, Jr., T. B. Avery and D. E. Johnson. 1991. Small intestinal starch digestion in steers: Effect of various levels of abomasal glucose, corn starch and corn dextrin infusion on small intestinal disappearance and net glucose absorption. J. Anim. Sci. 69: 328-338

Kreikemeier, K. K. 1990. Influence of dietary forage and feed intake on carbohydrase activities and small intestinal morphology of calves. J. Anim. Sci. 68:2916-2929

Mace, O. J., J. Affleck, N. Patel and G. L. Kellett. 2007. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical glut2. J. Physiol. 582:379-392 crossref(new window)

Madara, J. L. and J. R. Pappenheimer. 1987. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J. Membr. Biol. 100:149-164 crossref(new window)

Mayes, R. W. and E. R. Orskov. 1974. The utilization of gelled maize starch in the small intestine of sheep. Br. J. Nutr. 32: 143-153 crossref(new window)

McCormick, R. J. and W. E. Stewart. 1966. Pancreatic secretion in the bovine calf. J. Dairy Sci. 50:568-571 crossref(new window)

McNeill, J. W., R. E. Tucker, G. E. Mitchell and G. T. Schelling. 1974. Maltase response to infused glucose and injected insulin. J. Anim. Sci. 39:245-246

Merchen, N. R. and D. C. Church. 1988. Digestion, absorption and excretion in ruminants The ruminant animal - digestive physiology and nutrition. p 172. Prentice-Hall, Englewood Cliffs, NJ

Moe, A. J., P. A. Pocius and C. E. Polan. 1985. Isolation and characterization of brush border membrane vesicles from bovine small intestine. J. Nutr. 115:1173-1179

Morrill, J. L., W. E. Stewart, R. J. McCormick and H. C. Fryer. 1970. Pancreatic amylase secretion by young calves. J. Dairy Sci. 53:72-78 crossref(new window)

Nichols, B. L. 2009. Mucosal maltase-glucoamylase plays a crucial role in starch digestion and prandial glucose homeostasis of mice. J. Nutr. 139:684-690 crossref(new window)

Pappenheimer, J. R. 1987. Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters. J. Membr. Biol. 100:137-148 crossref(new window)

Pappenheimer, J. R. 1990. Paracellular intestinal absorption of glucose, creatinine, and mannitol in normal animals: Relation to body size. Am. J. Physiol. 259:G290-G299 crossref(new window)

Pappenheimer, J. R. and K. Z. Reiss. 1987. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J. Membr. Biol. 100:123-136 crossref(new window)

Quezada-Calvillo, R. et al. 2007a. Luminal substrate "Brake" On mucosal maltase-glucoamylase activity regulates total rate of starch digestion to glucose. J. Pediatr. Gastroenterol. Nutr. 45: 32-43 crossref(new window)

Quezada-Calvillo, R. et al. 2007b. Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis. J. Nutr. 137:1725-1733 crossref(new window)

Quezada-Calvillo, R. et al. 2008. Luminal starch substrate "Brake" On maltase-glucoamylase activity is located within the glucoamylase subunit. J. Nutr. 138:685-692

Richards, C. J. et al. 2002. Intestinal starch disappearance increased in steers abomasally infused with starch and protein. J. Anim. Sci. 80:3361-3368

Richards, C. J., K. C. Swanson, S. J. Paton, D. L. Harmon and G. B. Huntington. 2003. Pancreatic exocrine secretion in steers infused post-ruminally with casein and corn starch. J. Anim. Sci. 81:1051-1056 crossref(new window)

Rodriguez, S. M. et al. 2004. Influence of abomasal carbohydrates on small intestinal sodium-dependent glucose cotransporter activity and abundance in steers. J. Anim. Sci. 82:3015-3023

Russell, J. R., A. W. Young and N. A. Jorgensen. 1981. Effect dietary corn starch intake on pancreatic amylase and intestinal maltase and ph in cattle. J. Anim. Sci. 52:1177-1182

Scharrer, E., H. G. Liebich, W. Raab and N. Promberger. 1979a. Influence of age and rumen development on intestinal absorption of galactose and glucose in lambs. A functional and morphological study. Zentralbl.Veterinarmed. A. 26:95-105

Scharrer, E., W. Peter and W. Raab. 1979b. Reciprocal relationship between rumen development and intestinal sugar transport capacity in sheep. Zentralbl.Veterinarmed.A. 26:513-520

Shirazi-Beechey, S. P. et al. 1991. Ontogenic development of lamb intestinal sodium-glucose co-transporter is regulated by diet. J. Physiol. 437:699-708

Shirazi-Beechey, S. P., R. B. Kemp, J. Dyer and R. B. Beechey. 1989. Changes in the functions of the intestinal brush border membrane during the development of the ruminant habit in lambs. Comp. Biochem. Physiol. 94B:801-806

Siddons, R. C. 1968. Carbohydrase activities in the bovine digestive tract. Biochem. J. 108:839-844

Swanson, K. C., J. A. Benson, J. C. Matthews and D. L. Harmon. 2004. Pancreatic exocrine secretion and plasma concentration of some gastrointestinal hormones in response to abomasal infusion of starch hydrolyzate and/or casein. J. Anim. Sci. 82:1781-1787

Swanson, K. C. et al. 2008. Pancreatic mass, cellularity, and alpha amylase and trypsin activity in feedlot steers fed increasing amounts of a high-moisture-corn based diet. Can. J. Anim. Sci. 88:303-308

Swanson, K. C., J. C. Matthews, C. A. Woods and D. L. Harmon. 2002a. Post-ruminal administration of partially hydrolyzed starch and casein influences pancreatic à-amylase expression in calves. J. Nutr. 132:376-381

Swanson, K. C., C. J. Richards and D. L. Harmon. 2002b. Influence of abomasal infusion of glucose or partially hydrolyzed starch on pancreatic exocrine secretion in beef steers. J. Anim. Sci. 80:1112-1116

Taniguchi, K., G. B. Huntington and B. P. Glenn. 1995. Net nutrient flux by visceral tissues of beef steers given abomasal and ruminal infusions of casein and starch. J. Anim. Sci. 73:236-249

Thorens, B. 1993. Facilitated glucose transporters in epithelial cells. Annu. Rev. Physiol. 55:591-608 crossref(new window)

Threadgill, D. S. and J. E. Womack. 1991. Mapping hsa 3 loci in cattle: Additional support for the ancestral synteny of hsa 3 and 21. Genomics 11:1143-1148 crossref(new window)

Walker, J. A. and D. L. Harmon. 1995. Influence of ruminal or abomasal starch hydrolysate infusion on pancreatic exocrine secretion and blood glucose and insulin concentrations in steers. J. Anim. Sci. 73:3766-3774

Wright, E. M. 1993. The intestinal Na+/glucose cotransporter. Annu. Rev. Physiol. 55:575-589 crossref(new window)

Zhao, F. Q., E. K. Okine, C. I. Cheeseman, S. P. Shirazi-Beechey and J. J. Kennelly. 1998. Glucose transporter gene expression in lactating bovine gastrointestinal tract. J. Anim. Sci. 76: 2921-2929