Advanced SearchSearch Tips
Serum Lipids Can Convert Bovine Myogenic Satellite Cells to Adipocytes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Serum Lipids Can Convert Bovine Myogenic Satellite Cells to Adipocytes
Beloor, Jagadish; Kang, Hye-Kyeong; Moon, Yang-Soo;
  PDF(new window)
Serum lipid (SL) is a commercially available cholesterol-rich, proteinaceous compound extracted from bovine serum. Here we investigated the adipogenic transdifferentiation potential of SL on bovine myogenic satellite cells. Exposure of satellite cells to SL could generate lipid droplets on day 2, and further exposure to SL increased cytoplasmic lipid accumulation giving adipocyte morphology. The expression analysis of PPAR gamma and GPDH adipocyte markers along with Oil-red-O staining results confirmed the transdifferentiation potential of SL. When cells were treated at different concentrations (5, 10, 20, /ml) of SL, the results indicated that even levels as low as SL /ml could induce transdifferentiation, and maximum induction was obtained at SL/ml. After treatment with SL at different concentrations the expression levels of PPAR gamma varied significantly (p<0.05), whereas the expression of other adipogenic transcription factors showed no difference, indicating that SL acts through PPAR gamma. The combined effect of SL and troglitazone proved to be the best combination for induction of transdifferentiation compared to the individual effect of SL or troglitazone. Thus, overall results clearly show that SL induces transdifferentiation of bovine myogenic satellite cells to adipocytes.
Transdifferentiation;Bovine Satellite Cells;Serum Lipids;Myocytes;Adipocytes;
 Cited by
Effect of porcine placenta steroid extract on myogenic satellite cell proliferation, transdifferentiation, and lipid accumulation, In Vitro Cellular & Developmental Biology - Animal, 2012, 48, 5, 326  crossref(new windwow)
Novel method to differentiate 3T3 L1 cells in vitro to produce highly sensitive adipocytes for a GLUT4 mediated glucose uptake using fluorescent glucose analog, Journal of Cell Communication and Signaling, 2013, 7, 2, 129  crossref(new windwow)
Depot-specific gene expression profiles during differentiation and transdifferentiation of bovine muscle satellite cells, and differentiation of preadipocytes, Genomics, 2012, 100, 3, 195  crossref(new windwow)
Asakura, A., M. A. Rudnicki and M. Komaki. 2001. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:1432-1436.

Ban, A., K. Yamanouchi, T. Matsuwaki and M. Nishihara. 2008. In vivo gene transfer of PPARgamma is insufficient to induce adipogenesis inn skeletal muscle. J. Vet. Med. Sci. 70:761-767. crossref(new window)

Dunshea, F. R., D. N. D’Souza, D. W. Pethick, G. S. Harper and R.D. Warner. 2005. Effects of dietary factors and other metabolic modifiers on quality and nutritional value of meat. Meat Sci. 71:8-38. crossref(new window)

Emerson, C. P. and Skeletal Myogenesis. 1993. Genetics and embryology to the fore. Curr. Opin. Genet. Dev. 3:265-274. crossref(new window)

Erding, H. U., P. Tontonoz and B. M. Spiegelman. 1995.Transdifferentiation of myoblasts by the adipogenic transcription factor $PPAR{\gamma}$and $C/EBP{\alpha}$. Proc. Natl. Acad. Sci. USA. 92:9856-9860. crossref(new window)

Gondret, J. F. and B. Lebret. 2002. Feeding intensity and dietary protein level affect adipocyte cellularity and lipogenic capacity of muscle homogenates in growing pigs, without modification of the expression of sterol regulatory element binding protein. J. Anim. Sci. 80:3184-3193.

Grant, A. C., Ortiz-Colòn, M. E. Doumit and D. D. Buskirk. 2008.Optimization of in vitro conditions for bovine subcutaneous and intramuscular preadipocyte differentiation. J. Anim. Sci. 86:73-82.

Hausman, G. J., S. P. Poulos, T. D. Pringle and M. J. Azain. 2008.The influence of thaizolidinediones on adipogenesis in vitro and in vivo: Potential modifiers of intramuscular adipose tissue deposition in meat animals. J. Anim. Sci. 86:E236- E243.

Hong, Y. H., Y. Nishimura, D. Hishikawa, H. Tsuzuki, H.Miyahara, C. Gotoh, K. C. Choi, D. D. Feng, C. Chen, H. G.Lee, K. Kazuo, S. G. Roh and S. Sasaki. 2006. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR4. Endocrinology 146:5092-5099.

Hu, E., P. Tontonoz and B. M. Spiegelman. 1995.Trandifferentiation of myoblasts by the adipogenic transcription factor PPAR-$\gamma$ and C/EBP $\alpha$. Proc. Natl. Acad. Sci. USA. 92:9856-9860. crossref(new window)

Lee, K., H. Kim, Q. Li, X. Chi, C. Ueta, T. Komori, J. M. Wozney,E. Kim, J. Choi, H. Ryoo and S. Bae. 2000. Runx2 is a common target of transforming growth factor ${\beta}1$ and bone morphogenetic protein 2, and cooperation between Runx2 and Smad 5 induces osteoblast specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol. Cell. Biol. 20:8783-8792. crossref(new window)

Li, W. C., W. Y. Yu, J. M. Quinlan, Z. D. Burke and D. Tosh. 2005. The molecular basis of transdifferentiation. J. Cell. Mol. Med. 9:569-582. crossref(new window)

MacDougald, O. A. and M. D. Lane. 1995. Adipocyte differentiation. When precursors area also regulators. Curr. Biol. 5:618-621. crossref(new window)

McKnight, S. L., M. D. Lane and S. Gluecksohn-Waelsch. 1989. Is CCAAT/enhancer-binding protein a central regulator of energy metabolism. Genes Dev. 3:2021-2024. crossref(new window)

Novakofski, J. 2004. Adipogenic: Usefulness of in vitro and in vivo experimental models. J. Anim. Sci. 82:905-915.

Seale, P., L. A. Sabourin, A. G. Gabardo, A. Mansouri, P. Gruss and M. A. Rudnicki. 2000. Pax-7 is required for the specification of myogenic satellite cells. Cell 102:777-786. crossref(new window)

Singh, N. K., H. S. Chae, I. H. Hwang, Y. M. Yoo, C. N. Ahn, S. H.Lee, H. J. Lee, H. J. Park and H. Y. Chung. 2007. Transdifferentiation of porcine satellite cells to adipoblasts with ciglitizone. J. Anim. Sci. 85:1126-1135. crossref(new window)

Soret, B., H. J. Lee, E. Finley, S. C. Lee and R. G. Vernon. 1999.Regulation of differentiation of sheep subcutaneous and abdominal preadipocytes in culture. J. Endocrinol. 161:517-524. crossref(new window)

Stahl, A., J. G. Evans, S. Pattel, D. Hirsch and H. F. Lodish. 2002. Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes. Dev. Cell 2:477-488. crossref(new window)

Teboul, L., D. Gaillard, L. Staccini, H. Inadera, Z. E. Amri and P.A. Grimaldi. 1995. Thiazolidinediones and fatty acid convert myogenic cells into adipose-like cells. J. Biol. Chem. 270: 28183-28187. crossref(new window)

Tosh, D. and J. M. M. Slack. 2002. How cells change their phenotype. Nat. Rev. Mol. Cell Biol. 3:187-194. crossref(new window)

Van Barneveld, R. J. 2003. Modern pork production-Balancing efficient growth and feed conversion with product quality requirements and consumer demands. Asia Pac. J. Clin. Nutr. 12:(Suppl.) S31.

Weintraub, H., S. J. Tapscott, R. L. Davis, M. J. Thayer, M. A.Adam, A. B. Lassar and A. D. Miller. 1989. Activation of muscle- specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. USA. 86:5434-5438. crossref(new window)

Wu, Z., Y. Xie, N. L. Buchner and S. R. Farmer. 1996. Induction of peroxisome proliferator activated receptor $\gamma$ during the conversion of 3T3 fibroblasts into adipocytes is mediated by $C/EBP{\beta}$, $C/EBP{\delta}$, and glucocorticoids. Mol. Cell. Biol. 16: 4128-4136.

Yeh, W. C., Z. Cao, M. Classon and S. L. Mcknight. 1995.Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP-family of leucine zipper proteins. Genes Dev. 9:168-181. crossref(new window)