Advanced SearchSearch Tips
Trace Mineral Nutrition in Poultry and Swine
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Trace Mineral Nutrition in Poultry and Swine
Richards, James D.; Zhao, Junmei; Harrell, Robert J.; Atwell, Cindy A.; Dibner, Julia J.;
  PDF(new window)
Trace minerals such as zinc, copper, and manganese are essential cofactors for hundreds of cellular enzymes and transcription factors in all animal species, and thus participate in a wide variety of biochemical processes. Immune development and response, tissue and bone development and integrity, protection against oxidative stress, and cellular growth and division are just a few examples. Deficiencies in trace minerals can lead to deficits in any of these processes, as well as reductions in growth performance. As such, most animal diets are supplemented with inorganic and/or organic forms of trace minerals. Inorganic trace minerals (ITM) such as sulfates and oxides form the bulk of trace mineral supplementation, but these forms of minerals are well known to be prone to dietary antagonisms. Feeding high-quality chelated trace minerals or other classes of organic trace minerals (OTM) can provide the animal with more bioavailable forms of the minerals. Interestingly, many, if not most, published experiments show little or no difference in the bioavailability of OTMs versus ITMs. In some cases, it appears that there truly is no difference. However, real differences in bioavailability can be masked if source comparisons are not made on the linear portion of the dose-response curve. When highly bioavailable chelated minerals are fed, they will better supply the biochemical systems of the cells of the animal, leading to a wide variety of benefits in both poultry and swine. Indeed, the use of certain chelated trace minerals has been shown to enhance mineral uptake, and improve the immune response, oxidative stress management, and tissue and bone development and strength. Furthermore, the higher bioavailability of these trace minerals allows the producer to achieve similar or improved performance, at reduced levels of trace mineral inclusion.
Chelate;Trace Mineral;Poultry;Swine;Immune Response;MINTREX;
 Cited by
Effects of a Chelated Copper as Growth Promoter on Performance and Carcass Traits in Pigs,Zhao, J.;Allee, G.;Gerlemann, G.;Ma, L.;Gracia, M.I.;Parker, D.;Vazquez-Anon, M.;Harrel, R.J.;

Asian-Australasian Journal of Animal Sciences, 2014. vol.27. 7, pp.965-973 crossref(new window)
Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates, Journal of Dairy Science, 2012, 95, 8, 4568  crossref(new windwow)
Influence of organic iron complex on sow reproductive performance and iron status of nursing pigs, Livestock Science, 2014, 160, 89  crossref(new windwow)
Superior growth performance in broiler chicks fed chelated compared to inorganic zinc in presence of elevated dietary copper, Journal of Animal Science and Biotechnology, 2016, 7, 1  crossref(new windwow)
Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens, Poultry Science, 2016, 95, 8, 1813  crossref(new windwow)
Productive performance, eggshell quality, and eggshell ultrastructure of laying hens fed diets supplemented with organic trace minerals, Poultry Science, 2014, 93, 1, 104  crossref(new windwow)
Comparative evaluation of an inorganic and a commercial chelated copper source in Pacific white shrimp Litopenaeus vannamei (Boone) fed diets containing phytic acid, Aquaculture, 2014, 422-423, 63  crossref(new windwow)
Effect of copper nanoparticles and copper sulphate on metabolic rate and development of broiler embryos, Animal Feed Science and Technology, 2016, 220, 151  crossref(new windwow)
Effects of Organic and Inorganic Forms of Manganese, Zinc, Copper, and Chromium on Bioavailability of These Minerals and Calcium in Late-Phase Laying Hens, Biological Trace Element Research, 2015, 167, 2, 300  crossref(new windwow)
Dietary Mineral Sources Altered Lipid and Antioxidant Profiles in Broiler Breeders and Posthatch Growth of Their Offsprings, Biological Trace Element Research, 2012, 145, 3, 318  crossref(new windwow)
Effect of high dietary zinc oxide on the caecal and faecal short-chain fatty acids and tissue zinc and copper concentration in pigs is reversible after withdrawal of the high zinc oxide from the diet, Journal of Animal Physiology and Animal Nutrition, 2015, 99, 13  crossref(new windwow)
Effects of a Chelated Copper as Growth Promoter on Performance and Carcass Traits in Pigs, Asian-Australasian Journal of Animal Sciences, 2014, 27, 7, 965  crossref(new windwow)
Dissemination of Antibiotic Resistance Genes in Representative Broiler Feedlots Environments: Identification of Indicator ARGs and Correlations with Environmental Variables, Environmental Science & Technology, 2014, 48, 22, 13120  crossref(new windwow)
Antioxidant capacity and concentration of redox-active trace mineral in fully weaned intra-uterine growth retardation piglets, Journal of Animal Science and Biotechnology, 2015, 6, 1  crossref(new windwow)
Effects of Methionine Hydroxy Analog Chelated Cu/Mn/Zn on Laying Performance, Egg Quality, Enzyme Activity and Mineral Retention of Laying Hens, The Journal of Poultry Science, 2012, 49, 1, 20  crossref(new windwow)
Efficacy of inorganic and chelated trace minerals (Cu, Zn and Mn) premix sources in Pacific white shrimp, Litopenaeus vannamei (Boone) fed plant protein based diets, Aquaculture, 2016, 459, 117  crossref(new windwow)
Andreini, C., L. Banci, I. Bertini and A. Rosato. 2006. Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 5:196-201. crossref(new window)

Baker, D. H. and C. B. Ammerman. 1995. Zinc Bioavailability. In: Bioavailability of nutrients for animals: amino acids, minerals, and vitamins (Ed. C. B. Ammerman, D. H. Baker and A. J. Lewis). Academic Press, San Diego, CA. pp. 367-398.

Blanchard, R. K., J. B. Moore, C. L. Green and R. J. Cousins.2001. Modulation of intestinal gene expression by dietary zinc status: effectiveness of cDNA arrays for expression profiling of a single nutrient deficiency. Proc. Natl. Acad. Sci. USA 98:13507-13513. crossref(new window)

Brown, T. F. and L. K. Zeringue. 1994. Laboratory Evaluations of solubility and structural integrity of complexed and chelated trace mineral supplements. J. Dairy Sci. 77:181-189. crossref(new window)

Buckley, D. J., P. A. Morrissey and J. I. Gray. 1995. Influence of dietary vitamin E on the oxidative stability and quality of pig meat. J. Anim. Sci. 73:3122-3130.

Cao, J., P. R. Henry, R. Guo, R. A. Holwerda, J. P. Toth, R. C.Littell, R. D. Miles and C. B. Ammerman. 2000. Chemical characteristics and relative bioavialability of supplemental organic zinc sources for poultry and ruminants. J. Anim. Sci. 78:2039-2054.

Coleman, J. E. 1992. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem. 61:897-946. crossref(new window)

Cousins, R. J., R. K. Blanchard, J. B. Moore, L. Cui, C. L. Green,J. P. Liuzzi, J. Cao and J. A. Bobo. 2003. Regulation of zinc metabolism and genomic outcomes. J. Nutr. 133:1521S-1526S.

Cui, L., Y. Takagi, M. Wasa, K. Sando, J. Khan and A. Okada.1999. Nitric oxide synthase inhibitor attenuates intestinal damage induced by zinc deficiency in rats. J. Nutr. 129:792-798.

Dibner, J. J. 2005. Early nutrition of zinc and copper in chicks and poults: impact on growth and immune function. Proc. 2005 Proceedings of the 3rd Mid-Atlantic Nutrition Conference, Timonium, MD.

Dibner, J. J., C. A. Atwell, M. L. Kitchell, W. D. Shermer and F. J.Ivey. 1996. Feeding of oxidized fats to broilers and swine: effects on enterocyte turnover, hepatocyte proliferation and the gut associated lymphoid tissue. Anim. Feed Sci. Technol. 62:1-13. crossref(new window)

Dibner, J. J., J. D. Richards, M. L. Kitchell and M. A. Quiroz.2007. Metabolic challenges and early bone development. J. Appl. Poult. Res. 16:126-137. crossref(new window)

Dreosti, I. E. 2001. Zinc and the gene. Mutat. Res. 475:161-167. crossref(new window)

Fawcett, D. W. 1994. Bone. in Bloom and Fawcett: A textbook of histology Chapman & Hall, New York.

Ferket, P. R., E. O. Oviedo-Rondón, P. L. Mente, D. V. Bohórquez,A. A. Santos Jr., J. L. Grimes, J. D. Richards, J. J. Dibner andV. Felts. 2009. Organic trace minerals and 25-hydroxycholecalciferol affect performance characteristics, leg abnormalities and biomechanical properties of leg bones of turkeys. Poult Sci. 88:118-131. crossref(new window)

Formigari, A., P. Irato and A. Santon. 2007. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp. Biochem. Physiol. 146:443-459.

Fraker, P. J. 2005. Roles for cell death in zinc deficiency. J. Nutr. 135:359-362.

Fraker, P. J., L. E. King, T. Laakko and T. L. Vollmer. 2000. The dynamic link between the integrity of the immune system and zinc status. J. Nutr. 130:1399S-1406S.

Gallup, W. and L. Norris. 1939. The effect of a deviciency of manganese in the diet of the hen. Poult. Sci. 18:83-88. crossref(new window)

Girotti, A. W. 1998. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 39:1529-1542.

Guenthner, E., C. Carlson and R. Emerick. 1978. Copper salts for growth stimulation and alleviation of aortic rupture losses in turkeys. Poult. Sci. 57:1313-1324. crossref(new window)

Guo, R., P. R. Henry, R. A. Holwerda, J. Cao, R. C. Littell, R. D.Miles and C. B. Ammerman. 2001. Chemical characteristics and relative bioavailability of supplemental organic copper sources for poultry. J. Anim. Sci. 79:1132-1141.

Ho, E. and B. N. Ames. 2002. Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkB, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc. Natl. Acad. Sci. USA. 99:16770-16775. crossref(new window)

Ho, E., C. Courtemanche and B. N. Ames. 2003. Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. J. Nutr. 133:2543-2548.

Honda, Y. and S. Honda. 1999. The daf-2 gene network for longevity regulates oxidative stress resistance and Mnsuperoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 13:1385-1393.

Huang, Y. L., L. Lu, S. F. Li, X. G. Luo and B. Liu. 2009. Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed a conventional cornsoybean meal diet. J. Anim. Sci. 87:2038-2046. crossref(new window)

Ibs, K.-H. and L. Rink. 2003. Zinc-altered immune function. J. Nutr. 133:1452S-1456S.

Iqbal, M., N. R. Pumford, Z. X. Tang, K. Lassiter, T. Wing, M.Cooper and W. Bottje. 2004. Low feed efficient broilers within a single genetic line exhibit higher oxidative stress and protein expression in breast muscle with lower mitochondrial complex activity. Poult. Sci. 83:474-484. crossref(new window)

Kokoszka, J. E., P. Coskun, L. A. Esposito and D. C. Wallace. 2001. Increased mitochondrial oxidative stress in the Sod2(+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc. Natl. Acad. Sci. USA 98:2278-2283. crossref(new window)

Leeson, S. and J. D. Summers. 2001. Scott's Nutrition of the Chicken. 4th Ed. University Books, Guelph, Ontario.

Manangi, M. K., T. Hampton, P. Fisher, J. D. Richards, M.Vazquez-Anon and K. D. Christensen. 2010. Impact of feeding lower levels of chelated minerals vs. industry levels of inorganic trace minerals on broiler performance, yield, foot pad health, and litter minerals concentration. Proc. 2010 International Poultry Scientific Forum Atlanta, GA.

Mayne, S. T. 2003. Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative stress status in epidemiologic research. J. Nutr. 133:933S-940S.

Moghaddam, H. N. and R. Jahanian. 2009. Immunological responses of broiler chicks can be modulated by dietary supplementation of zinc-methionine in place of inorganic zinc sources. Asian-Aust. J. Anim. Sci. 22:396-403. crossref(new window)

O'Dell, B., B. Harkwick, G. Reynolds and J. Savage. 1961. Connective tissue defect in the chick resulting from copper deficiency. Proc. Soc. Exp. Biol. Med. 108:402-405. crossref(new window)

O'Dell, B. L. 1989. Mineral interactions relevant to nutrient requirements. J. Nutr. 119:1832-1838.

Oberleas, D., M. E. Muhrer and B. L. O'Dell. 1966. Dietary metalcomplexing agents and zinc availability in the rat. J. Nutr. 90:56-62.

Opsahl, W., H. Zeronian, M. Ellison, D. Lewis, R. B. Rucker andR. Riggins. 1982. Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon. J. Nutr. 112:708-716.

Orr, W. C. and R. S. Sohal. 1994. Extension of life span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128-1130. crossref(new window)

Pardo, A. and M. Selman. 2005. MMP-1: the elder of the family. Int. J. Biochem. Cell Biol. 37:283-288. crossref(new window)

Parkes, T. L., A. J. Elia, D. Dickson, A. J. Hilliker, J. P. Phillipsand G. L. Boulianne. 1998. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat. Genet. 19:171-174. crossref(new window)

Payne, R. L. and L. L. Southern. 2005. Changes in glutathione peroxidase and tissue selenium concentrations of broilers after consuming a diet adequate in selenium. Poult. Sci. 84:1268-1276. crossref(new window)

Rath, N. C., J. M. Balog, W. E. Huff, G. R. Huff, G. B. Kulkarniand J. F. Tierce. 1999. Comparative differences in the composition and biomechanical properties of tibiae of sevenand seventy-two-week-old male and female broiler breeder chickens. Poult. Sci. 78:1232-1239. crossref(new window)

Rath, N. C., W. E. Huff, J. M. Balog, G. R. Bayyari and R. P.Reddy. 1997. Matrix metalloproteinase activities in avian tibial dyschondroplasia. Poult. Sci. 76:501-505. crossref(new window)

Richards, J. D., C. A. Atwell, C. W. Wuelling and M. E. Wehmeyer.2007. A real time polymerase chain reaction assay for metallothionein to measure bioavailability of zinc sources for chickens. Proc. International Poultry Scientific Forum, Atlanta, GA.

Richards, J. D., P. Fisher, T. D. Wineman, C. A. Atwell and K. J.Wedekind. 2010. Estimation of the Zn bioavailability of a Zn chelate relative to Zn sulfate based on tibia Zn and small intestinal metallothionein expression in 2010 International Poultry Scientific Forum, Atlanta, GA.

Richards, J. D., T. Hampton, C. W. Wuelling, M. E. Wehmeyer, M.L. Kitchell and J. J. Dibner. 2005. Mintrex Zn organic trace mineral (zinc bis[-2-hydroxy-4-methylthiobutyrate]) serves as a zinc and methionine source, and improves performance, intestinal epithelial lifespan, gut breaking strength and tibia zinc in broilers. in 2005 International Poultry Scientific Forum, Atlanta, GA.

Rothstein, J. D., L. A. Bristol, B. Hosler, R. H. Brown Jr and R. W. Kunel. 1994. Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc. Natl. Acad. Sci. USA. 91:4155-4159. crossref(new window)

Rucker, R. B., T. Kosonen, M. S. Clegg, A. E. Mitchell, B. R.Rucker, J. Y. Uriu-Hare and C. L. Keen. 1998. Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am. J. Clin. Nutr. 67(Suppl):996S-1002S.

Shankar, A. H. and A. S. Prasad. 1998. Zinc and immune function: the biological basis of altered resistance to infection. Am. J. Clin. Nutr. 68(Suppl):447S-463S.

Sheehy, P. J. A., P. A. Morrissey and A. Flynn. 1994. Consumption of thermally-oxidized sunflower oil by chicks reduces $\alpha$-tocopherol status and increases susceptibility of tissues to lipid oxidation. Br. J. Nutr. 71:53-65. crossref(new window)

Song, Y., S. W. Leonard, M. G. Traber and E. Ho. 2009. Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J. Nutr. 139:1626-1631. crossref(new window)

Spears, J. W. and W. P. Weiss. 2008. Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet. J. 176:70-76. crossref(new window)

Starcher, B. C., C. H. Hill and J. G. Madaras. 1980. Effect of zinc deficiency of bone collagenase and collagen turnover. J. Nutr. 110:2095-2102.

Troy, C. M. and M. L. Shelanski. 1994. Downregulation of copper/zinc superoxide dismutase (SOD1) causes neuronal cell death. Proc. Natl. Acad. Sci. USA. 91:6384-6387. crossref(new window)

Underwood, E. J. and N. F. Suttle. 1999. The mineral nutrition of livestock. 3rd Edition. CABI Publishing, New York.

Vallee, B. L. and K. H. Falchuk. 1993. The biochemical basis of zinc physiology. Phys. Rev. 73:79-118.

Wedekind, K. J., A. E. Hortin and D. H. Baker. 1992.Methodology for assessing zinc bioavailability: efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. J. Anim. Sci. 70:178-187.

Zhao, J., R. B. Shirley, T. R. Hampton, J. D. Richards, R. J. Harrell,J. J. Dibner, C. D. Knight and M. Vazquez-Anon. 2008. Benefits of an organic trace mineral on performance with dietary Cu antagonism in broilers. Poultry Scienc Association 97th Annual Meeting, July 20-23, 2008, Niagara Falls, Canada.