Advanced SearchSearch Tips
Direct-fed Microbials for Ruminant Animals
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Direct-fed Microbials for Ruminant Animals
Seo, Ja-Kyeom; Kim, Seon-Woo; Kim, Myung-Hoo; Upadhaya, Santi D.; Kam, Dong-Keun; Ha, Jong-K.;
  PDF(new window)
Direct-fed microbials (DFM) are dietary supplements that inhibit gastrointestinal infection and provide optimally regulated microbial environments in the digestive tract. As the use of antibiotics in ruminant feeds has been banned, DFM have been emphasized as antimicrobial replacements. Microorganisms that are used in DFM for ruminants may be classified as lactic acid producing bacteria (LAB), lactic acid utilizing bacteria (LUB), or other microorganisms including species of Lactobacillus, Bifidobacterium, Enterococcus, Streptococcus, Bacillus and Propionibacterium, strains of Megasphaera elsdenii and Prevotella bryantii and yeast products containing Saccharomyces and Aspergillus. LAB may have beneficial effects in the intestinal tract and rumen. Both LAB and LUB potentially moderate rumen conditions and improve feed efficiency. Yeast DFM may reduce harmful oxygen, prevent excess lactate production, increase feed digestibility, and improve fermentation in the rumen. DFM may also compete with and inhibit the growth of pathogens, stimulate immune function, and modulate microbial balance in the gastrointestinal tract. LAB may regulate the incidence of diarrhea, and improve weight gain and feed efficiency. LUB improved weight gain in calves. DFM has been reported to improve dry matter intake, milk yield, fat corrected milk yield and milk fat content in mature animals. However, contradictory reports about the effects of DFM, dosages, feeding times and frequencies, strains of DFM, and effects on different animal conditions are available. Cultivation and preparation of ready-to-use strict anaerobes as DFM may be cost-prohibitive, and dosing methods, such as drenching, that are required for anaerobic DFM are unlikely to be acceptable as general on-farm practice. Aero-tolerant rumen microorganisms are limited to only few species, although the potential isolation and utilization of aero-tolerant ruminal strains as DFM has been reported. Spore forming bacteria are characterized by convenience of preparation and effectiveness of DFM delivery to target organs and therefore have been proposed as DFM strains. Recent studies have supported the positive effects of DFM on ruminant performance.
DFM;Probiotics;Mode of Action;Ruminants;
 Cited by
Enhancing Mulberry Leaf Meal with Urea by Pelleting to Improve Rumen Fermentation in Cattle,Tan, N.D.;Wanapat, M.;Uriyapongson, S.;Cherdthong, A.;Pilajun, R.;

Asian-Australasian Journal of Animal Sciences, 2012. vol.25. 4, pp.452-461 crossref(new window)
Effect of Fumarate Reducing Bacteria on In Vitro Rumen Fermentation, Methane Mitigation and Microbial Diversity,Mamuad, Lovelia;Kim, Seon Ho;Jeong, Chang Dae;Choi, Yeon Jae;Jeon, Che Ok;Lee, Sang-Suk;

The Journal of Microbiology, 2014. vol.52. 2, pp.120-128 crossref(new window)
Effect of Lactobacillus mucosae on In vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity,Soriano, Alvin P.;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon Jae;Jeong, Chang Dae;Bae, Gui Seck;Chang, Moon Baek;Lee, Sang Suk;

Asian-Australasian Journal of Animal Sciences, 2014. vol.27. 11, pp.1562-1570 crossref(new window)
산국 생균제 급여가 거세한우의 성장과 육질에 미치는 영향,이혁준;조성래;김동현;아만눌라;주영호;양한술;최인학;문성실;김삼철;

농업생명과학연구, 2014. vol.48. 5, pp.85-94 crossref(new window)
Enhancing Mulberry Leaf Meal with Urea by Pelleting to Improve Rumen Fermentation in Cattle, Asian-Australasian Journal of Animal Sciences, 2012, 25, 4, 452  crossref(new windwow)
Effect of fumarate reducing bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity, Journal of Microbiology, 2014, 52, 2, 120  crossref(new windwow)
Encapsulation of probiotics: insights into academic and industrial approaches, AIMS Materials Science, 2016, 3, 1, 114  crossref(new windwow)
Effects of direct-fed Bacillus pumilus 8G-134 on feed intake, milk yield, milk composition, feed conversion, and health condition of pre- and postpartum Holstein cows, Journal of Dairy Science, 2015, 98, 9, 6423  crossref(new windwow)
Ruminal Acidosis in Feedlot: From Aetiology to Prevention, The Scientific World Journal, 2014, 2014, 1  crossref(new windwow)
Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept, AMB Express, 2014, 4, 1  crossref(new windwow)
Direct-fed microbes: A tool for improving the utilization of low quality roughages in ruminants, Journal of Integrative Agriculture, 2015, 14, 3, 526  crossref(new windwow)
Effect of Lactobacillus mucosae on In vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity, Asian-Australasian Journal of Animal Sciences, 2014, 27, 11, 1562  crossref(new windwow)
Direct-Fed Microbial: Beneficial Applications, Modes of Action and Prospects as a Safe Tool for Enhancing Ruminant Production and Safeguarding Health, International Journal of Pharmacology, 2016, 12, 3, 220  crossref(new windwow)
Use of a direct-fed microbial product as a supplement during the transition period in dairy cattle, Journal of Dairy Science, 2014, 97, 11, 7102  crossref(new windwow)
Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus NRRL 442: Enhancement of survivability and thermotolerance, Carbohydrate Polymers, 2015, 119, 173  crossref(new windwow)
Comparison of two liveBacillusspecies as feed additives for improvingin vitrofermentation of cereal straws, Animal Science Journal, 2016, 87, 1, 27  crossref(new windwow)
The use of direct-fed microbials for mitigation of ruminant methane emissions: a review, animal, 2014, 8, 02, 250  crossref(new windwow)
In vitro modulation of rumen microbiota and fermentation by native microorganisms isolated from the rumen of a fed-exclusively-on-pasture bovine, Annals of Microbiology, 2015, 65, 4, 2355  crossref(new windwow)
Effect of Probiotics Supplementation on Milk Yield and Its Composition in Lactating Holstein Fresien and Deoni Cross Bred Cows, Journal of Medical and Bioengineering, 2016, 5, 1, 19  crossref(new windwow)
Biological treatments as a mean to improve feed utilization in agriculture animals—An overview, Journal of Integrative Agriculture, 2015, 14, 3, 534  crossref(new windwow)
Effects of Direct-fed Microbial and Pine Cone Extract on Carcass Traits and Meat Quality of Hanwoo (Korean Native Cattle), Asian-Australasian Journal of Animal Sciences, 2015, 29, 5, 722  crossref(new windwow)
In vitro Nutrient Digestibility and Fermentation Characteristics of King Grass Combined with Concentrate-Containing Mixed Microbes, Pakistan Journal of Nutrition, 2016, 15, 8, 784  crossref(new windwow)
Feeding, Evaluating, and Controlling Rumen Function, Veterinary Clinics of North America: Food Animal Practice, 2014, 30, 3, 539  crossref(new windwow)
Abe, F., N. Ishibashi and S. Shimamura. 1995. Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J. Dairy Sci. 78:2838-2846. crossref(new window)

Abu-Tarboush, H. M., M. Y. Al-Saiady and A. H. Keir El-Din. 1996. Evaluation of diet containing lactobacilli on performance, fecal coliform, and lactobacilli of young dairy calves. Anim. Feed Sci. Technol. 57:39-49. crossref(new window)

Adams, M. C., J. Luo, D. Rayward, S. King, R. Gibson and G. H. Moghaddam. 2008. Selection of a novel direct-fed microbial to enhance weight gain in intensively reared calves. Anim. Feed Sci. Technol. 145:41-52. crossref(new window)

Arthur, T. M., J. M. Bosilevac, N. Kalchayanand, J. E. Wells, S. D. Shackelfold, T. L. Wheeler and M. Koohmaraie. 2010. Evaluation of a direct-fed microbial product effect on the prevalence and load of escherichia coli o157:H7 in feedlot cattle. J. Food Prot. 73:366-371.

Axelsson, L. T., T. C. Chung, W. Dobrogosz and S. E. Lidgren. 1989. Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb. Ecol. Health Dis. 2:131-136. crossref(new window)

Beharka, A. A., T. G. Nagaraja and J. L. Morrill. 1991. Performance and ruminal function development of young calves fed diets with aspergillus oryzae fermentation extract. J. Dairy Sci. 74:4326-4336. crossref(new window)

Carlsson, J., Y. Iwami and T. Yamada. 1983. Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase thiocyanate-hydrogen peroxide. Inf. Immunol. 40:70-80.

Chaucheyras, F., G. Fonty, G. Bertin, J. M. Salmon and P. Gouet. 1995. Effects of a strain of Saccharomyces cerevisiae (Levucell SC), a microbial additive for ruminants, on lactate metabolism in vitro. Can. J. Microbiol. 42:927-933.

Chiquette, J., M. J. Allison and M. A. Rasmussen. 2008. Prevotella bryantii 25a used as a probiotic in early-lactation dairy cows: Effect on ruminal fermentation characteristics, milk production, and milk composition. J. Dairy Sci. 91:3536-3543. crossref(new window)

Cotter, P. D., C. Hill and R. P. Ross. 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3:777-788. crossref(new window)

Cruywagen, C. W., I. Jordaan and L. Venter. 1996. Effect of lactobacillus acidophilus supplementation of milk replacer on preweaning performance of calves. J. Dairy Sci. 79:483-486. crossref(new window)

Dicks, L. M. T. and M. Botes. 2010. Probiotic lactic acid bacteria in the gastro-intestinal tract: Health benefits, safety and mode of action. Benef. Microbes 1:11-29. crossref(new window)

Dobrogosz, W. J., I. A. Casas, G. A. Pagano, T. L. Talarico, B. M.Sjoberg and M. Karlsson. 1989. Lactobacillus reuteri and the enteric microbiota. In: The Regulatory and protective role of the normal microflora (Ed. E. Norin). pp. 283-292. Stockton Press. New York.

Elam, N. A., J. F. Gleghorm, J. D. Rivera, M. L. Galyean, P. J. Defoor, M. M. Brashears and S. M. Younts-Dahl. 2003. Effects of live cultures of lactobacillus acidophilus (strains np45 and np51) and propionibacterium freudenreichii on performance, carcass, and intestinal characteristics, and escherichia coli strain o157 shedding of finishing beef steers. J. Anim. Sci. 81:2686-2698.

Forestier, C., C. De Champs, C. Vatoux and B. Joly. 2001. Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res. Microbiol. 152:167-173. crossref(new window)

Frizzo, L. S., L. P. Sotto, M. V. Zbrun, E. Bertozzi, G. Sequeira, R. R. Armesto and M. R. Rosmini. 2010. Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder. Anim. Feed Sci. Technol. 157:159-167. crossref(new window)

Fuller, R. 1989. A review: Probiotics in man and animals. J. Appl. Bacteriol. 66:365-378. crossref(new window)

Galyean, M. L., G. A. Nunnery, P. J. Defoor, G. B. Salyer and C. H. Parsons. 2000. Effects of live cultures of Lactobacillus acidophilus (Strains 45 and 51) and Propionibacterium freudenreichii PF-24 on performance and carcass characteristics of finishing beef steers. Available: Accessed June 27, 2002.

Ghorbani, G. R., D. P. Morgavi, K. A. Beauchemin and J. A. Z. Leedle. 2002. Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. J. Anim. Sci. 80:1977-1985.

Gilliland, S. E. 1989. Acidophilus milk products: a review of potential benefits to consumers. J. Dairy Sci. 72:2483-2494. crossref(new window)

Gregg, K., B. Hamdorf, K. Henderson, J. Kopecny and C. Wong. 1998. Genetically modified ruminal bacteria protect sheep from fluoroacetic acid poisoning. Appl. Environ. Microbiol. 64:3496-3498.

Grummer, R. R. 1995. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J. Anim. Sci. 73:2820-2833.

Holzapfel, W. H., R. Geisen and U. Schillinger. 1995. Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 24:343-362. crossref(new window)

Hong, H. A., L. H. Duc and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29:813-835. crossref(new window)

Hyronimus, B., C. Le Marrec, A. Hadj Sassi and A. Deschamps. 2000. Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61:193-197. crossref(new window)

Jones, R. J. and R. G. Megaritty. 1986. Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena. Aust. Vet. J. 63:259-262. crossref(new window)

Jones, G. W. and J. M. Rutter. 1972. Role of K88 antigen in the pathogenesis of neonatal diarrhoea caused by Escherichia coli in piglets. Infect. Immun. 6:918-927.

Jouany, J. P., F. Mathieu, J. Senaud, J. Bohatier, G. Bertin and M. Mercier. 1999. Influence of protozoa and fungal additives on ruminal pH and redox potential. S. Afr. J. Anim. Sci. 29:65-66.

Keyser, S. A., J. P. McMeniman, D. R. Smith, J. C. MacDonald and M. L. Galyean. 2007. Effects of saccharomyces cerevisiae subspecies boulardii cncm i-1079 on feed intake by healthy beef cattle treated with florfenicol and on health and performance of newly received beef heifers. J. Anim. Sci. 85:1264-1273. crossref(new window)

Kim, S. W. 2006. Development of a direct-fed microbial for beef cattle. PhD Dissertation. Mich. Stat. Univ. East Lansing, MI.

Kowalski, Z. M., P. Gorka, A. Schlagheck, W. Jagusiak, P. Micek and J. Strzetelski. 2009. Performance of holstein calves fed milk-replacer and starter mixture supplemented with probiotic feed additive. J. Anim. Feed Sci. 18:399-411.

Krehbiel, C. R., S. R. Rust, G. Zhang and S. E. Gilliland. 2003. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 81:E120-132.

Kritas, S. K., A. Govaris, G. Christodoulopoulos and A. R. Burriel. 2006. Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe's feed on sheep milk production and young lamb mortality. J. Vet. Med. Series A. 53:170-173. crossref(new window)

Kung, L., Jr. and A. O. Hession. 1995. Preventing in vitro lactic acid accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. J. Anim. Sci. 73:250-256.

Kung Jr, L. 2001. Direct-fed microbials for dairy cows and enzymes for lactating dairy cows: New theories and applications. In: 2001 Pennsylvania State Dairy Cattle Nutrition Workshop, Grantville, PA. pp. 86-102.

Lee, Y. K., K. Y. Puong, A. C. Ouwehand and S. Salminen. 2003. Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J. Med. Microbiol. 52:925-930. crossref(new window)

Lehloenya, K. V., C. R. Krehbiel, K. J. Mertz, T. G. Rehberger and L. J. Spicer. 2008. Effects of propionibacteria and yeast culture fed to steers on nutrient intake and site and extent of digestion. J. Dairy Sci. 91:653-662. crossref(new window)

Lynch, H. A. and S. A. Martin. 2002. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J. Dairy Sci. 85:2603-2608. crossref(new window)

Malik, R. and S. Bandla. 2010. Effect of source and dose of probiotics and exogenous fibrolytic enzymes (EFE) on intake, feed efficiency, and growth of male buffalo (bubalus bubalis) calves. Trop. Anim. Health Prod. 42:1263-1269. crossref(new window)

Matsuguchi, T., A. Takagi, T. Matsuzaki, M. Nagaoka, K. Ishikawa and T. Yokokura. 2003. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor a-inducing activities in macrophage through Toll-like receptor 2. Clin. Diagn. Lab. Immunol. 10:259-266.

Miettinen, M., J. Vuopio-Varkila and K. Varkila. 1996. Production of human necrosis factor a, interleukin 6, and interleukin 10 is induced by lactic acid bacteria. Infect. Immun. 64:5403-5405.

Miyagi, T., K. Kaneichi, R. I. Aminov, Y. Kobayashi, K. Sakka, S. Hoshino and K. Ohmiya. 1995. Enumeration of transconjugated Ruminococcus albus and its survival in the goat rumen. Appl. Environ. Microbiol. 61:2030-2032.

Nagaraja, T. G., C. J. Newbold, C. J. Van Nevel and D. I. Demeyer. 1997. Manipulation of ruminal fermentation. pp. 523-632 in the Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Blackie Academic & Professional, London, NY.

Nocek, J. E., W. P. Kautz, J. A. Z. Leedle and J. G. Allman. 2002. Ruminal supplementation of direct-fed microbials on diurnal ph variation and in situ digestion in dairy cattle. J. Dairy Sci. 85:429-433. crossref(new window)

Nocek, J. E., W. P. Kautz, J. A. Z. Leedle and E. Block. 2003. Direct-fed microbial supplementation on the performance of dairy cattle during the transition period. J. Dairy Sci. 86:331-335. crossref(new window)

Nocek, J. E. and W. P. Kautz. 2006. Direct-fed microbial supplementation on ruminal digestion, health, and performance of pre- and postpartum dairy cattle. J. Dairy Sci. 89:260-266. crossref(new window)

Oetzel, G. R., K. M. Emery, W. P. Kautz and J. E. Nocek. 2007. Direct-fed microbial supplementation and health and performance of pre- and postpartum dairy cattle: A field trial. J. Dairy Sci. 90:2058-2068. crossref(new window)

Ohya, T., T. Marubashi and H. Ito. 2000. Significance of fecal volatile fatty acids in shedding of Escherichia coli O157 from calves: experimental infection and preliminary use of a probiotic product. J. Vet. Med. Sci. 62:1151-1155. crossref(new window)

Pratt, W. C. 2001. Methods for maintaining and administering live probiotic as feed additives for animals. US Patent 5401501. Available: http://www.patentstorm. us/patents/5401501-fulltext.html. Accessed Jun. 15, 2007.

Qiao, G. H., A. S. Shan, N. Ma, Q. Q. Ma and Z. W. Sun. 2009. Effect of supplemental bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows. J. Anim. Physiol. Anim. Nutr. 94:429-436.

Raeth-Knight, M. L., J. G. Linn and H. G. Jung. 2007. Effect of direct-fed microbials on performance, diet digestibility, and rumen characteristics of holstein dairy cows. J. Dairy Sci. 90:1802-1809. crossref(new window)

Reynolds, C. K., P. C. Aikman, B. Lupoli, D. J. Humphries and D. E. Beever. 2003. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. J. Dairy Sci. 86:1201-1217. crossref(new window)

Ripamonti, B., A. Agazzi, A. Baldi, C. Balzaretti, C. Bersani, S. Pirani, R. Rebucci, G. Savoini, S. Stella, A. Stenico and C. Domeneghini. 2009. Administration of Bacillus coagulans in calves: Recovery from faecal samples and evaluation of functional aspects of spores. Vet. Res. Commun. 33:991-1001. crossref(new window)

Robinson, J. A., W. J. Smolenski, R. C. Greening, M. L. Ogilvie, R. L. Bell, K. Barsuhn and J. P. Peters. 1992. Prevention of acute acidosis and enhancement of feed intake in the bovine by Megasphaera elsdenii 407A. J. Anim. Sci. 70 (Suppl. 1):310 (Abstr.).

Roger, V., G. Fonty, S. Komisarczuk-Bony and P. Gouet. 1990. Effects of physicochemical factors on the adhesion to cellulose Avicel of the ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes. Appl. Environ. Microbiol. 56:3081-3087.

Rose, A. H. 1987. Responses to the chemical environment. In: The Yeasts (Ed. A. H. Rose and J. S. Harrisson) Vol. 2, Academic Press, London (1987), pp. 5-40.

Roos, T. B., V. C. Tabeleão, L. A. Dümmer, E. Schwegler, M. A. Goulart, S. V. Moura, M. N. Corrêa, F. P. L. Leite and C. Gil- Turnes. 2010. Effect of Bacillus cereus var. Toyoi and Saccharomyces boulardii on the immune response of sheep to vaccines. Food Agric. Immunol. 21:113-118. crossref(new window)

Sanders, M. E., L. Morelli and T. A. Tompkins. 2003. Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr. Rev. Food Sci. Food Saf. 2:101-110. crossref(new window)

Silva, M., N. V. Jacobus, C. Deneke and S. L. Gorbach. 1987. Antimicrobial substance from a human Lactobacillus strain. Antimicrob. Agents Chemother. 31:1231-1233. crossref(new window)

Stein, D. R., D. T. Allen, E. B. Perry, J. C. Bruner, K. W. Gates, T. G. Rehberger, K. Mertz, D. Jones and L. J. Spicer. 2006. Effects of feeding propionibacteria to dairy cows on milk yield, milk components, and reproduction. J. Dairy Sci. 89:111-125. crossref(new window)

Swinney-Floyd, D., B. A. Gardiner, F. N. Owens and T. Rehberger. 1999. Effects of inoculation with either Propionibacterium strain P-63 alone or in combination with Lactobacillus acidophilus strain LA53545 on performance of feedlot cattle. J. Anim. Sci. 77 (Suppl.):77 (Abstr.).

Tamate, H., A. D. McGilliard, N. L. Jacobson and R. Getty. 1961. Effect of various dietaries on the anatomical development of the stomach in the calf. J. Dairy Sci. 45:408-420.

Yoon, I. K. and M. D. Stern. 1995. Influence of direct-fed microbials on ruminal microbial fermentation and performance of ruminants: A review. Asian-Aust. J. Anim. Sci. 8:533-555. crossref(new window)

Wehnes, C., K. Novak, V. Patskevich, D. Shields, J. Coalson, A. Smith, M. Davis and T. Rehberger. 2009. Benefits of supplementation of an electrolyte scour treatment with a bacillus-based direct-fed microbial for calves. Probiotics Antimicrob. Proteins 1:36-44. crossref(new window)

Weiss, W. P., D. J. Wyatt and T. R. McKelvey. 2008. Effect of feeding propionibacteria on milk production by early lactation dairy cows. J. Dairy Sci. 91:646-652. crossref(new window)