JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Comparison of Gene Expression between Cumulus Oocyte Complexes and Naked Oocytes by Suppression Subtractive Hybridization in Swine
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Gene Expression between Cumulus Oocyte Complexes and Naked Oocytes by Suppression Subtractive Hybridization in Swine
Xiang, Zhi Feng; Zhang, Jin Zhou; Li, Xue Bin; Xie, Hong Bin; Wang, Qing Hua;
  PDF(new window)
 Abstract
In the antral follicle phase, several layers of cumulus cells surround the oocyte and play an important support and regulation role in oocyte development and maturation via intercellular communications and interactions between oocytes and cumulus cells. However, information on stage specific gene expression in swine during the phase is not well understood. To investigate the function of cumulus cells during in vitro maturation of porcine oocytes and gene expression, suppression subtractive hybridization (SSH) was performed to screen genes that were differentially expressed between cumulus-oocyte complexes (COCs) and naked oocytes (NOs). Utilizing mRNAs from in vitro maturation oocytes, a SSH cDNA library from COCs as the tester and NOs as the driver was constructed. The SSH cDNA library was then screened using dot blot analysis. Results showed that a total of 70 clones randomly selected from the library were differentially expressed. Among these, 41 exhibited high homology to known genes and 11 were novel expressed sequences tags (ESTs). Four differentially expressed genes, including bfgf, sprouty 2, egr and btc, were further studied by real time quantitative PCR; results confirmed an increased expression of respective mRNA in COCs compared with NOs, which suggests that these factors may play an important role in oocyte development and maturation.
 Keywords
Suppression Subtractive Hybridization (SSH);Gene Expression;Cumulus Cells, Porcine;
 Language
English
 Cited by
 References
1.
Aafke, P. A., P. M. Joep, C. M. John, P. M. Alphons, L. H. Johannes, Evers and A. Y. Torik. 2008. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis. MHR-Basic Sci. of Reprod. Medicine. 14:157-168

2.
Ajay, P. S. A., R. Sarvesh, D, Sachinandan, T. Manish, L. G. Surender and K. D. Tirtha. 2007. Expression stability of two housekeeping genes (18S rRNA and G3PDH) during in vitro maturation of follicular oocytes in buffalo (Bubalus bubalis). Anim. Reprod. Sci. 103:164-171

3.
Ashkenazi, H., X. Cao, S. Motola, M. Popliker, M. Conti and A. Tsafriri. 2005. Epidermal growth factor family members: endogenous mediators of the ovulatory response. Endocrinology 146:77-84 crossref(new window)

4.
Bodin, L., E. Di Pasquale, S. Fabre, M. Bontoux, P. Monget, L. Persani and P. Mulsant. 2007. A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep. Endocrinology 148:393-400 crossref(new window)

5.
Brankin, V., R. L. Quinn, R. Webb and M. G. Hunter. 2005b. BMP-2 and -6 modulate porcine theca cell function alone and co-cultured with granulosa cells. Domest. Anim. Endocrinol. 29:593-604 crossref(new window)

6.
Brower, P. T. and R. M. Schultz. 1982. Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev. Biol. 90:144-153 crossref(new window)

7.
Buccione, R., A. C. Schroeder and J. J. Eppig. 1990. Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol. Reprod. 43:543-547 crossref(new window)

8.
Carabatsos, M. J., C. Sellitto, D. A. Goodenough and D. F. Albertini. 2000. Oocyte-granulosa cell heterogonous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev. Biol. 226:167-179 crossref(new window)

9.
Chen, A. Q., S. D. Yu, Z. G. Wang, Z. R. Xu and Z. G. Yang. 2009. Stage specific expression of bone morphogenetic protein type I: effects of follicle-stimulating hormone on ovine antral follicles. Anim. Reprod. Sci. 111:391-399 crossref(new window)

10.
Conti, M., M. Hsieh, J. Y. Park and Y. Q. Su. 2006. Role of the epidermal growth factor network in ovarian follicles. Mol. Endocrinol. 20:715-723 crossref(new window)

11.
Downs, S. M. 2001. A gap-junction-mediated signal, rather than an external paracrine factor, predominates during meiotic induction in isolated mouse oocytes. Zygote 9:71-82

12.
Downs, S. M. and M. Hunzicker-Dunn. 1995. Differential regulation of oocyte maturation and cumulus expansion in the mouse oocyte-cumulus cell complex by site-selective analogs of cyclic adenosine monophosphate. Dev. Biol. 172:72-85 crossref(new window)

13.
Dragovic, R. A., L. J. Ritter, S. J. Schulz, F. Amato, Thompson, T. David, Armstrong and B. G. Robert. 2007. Oocyte-secreted factor activation of SMAD 2/3 signaling enables initiation of mouse cumulus cell expansion. Biol. Reprod. 76:848-857 crossref(new window)

14.
Diatchenko, L., Y. F. C. Lau, A. P. Campbell, A. Chenchik, F. Moqadam, B. Huang, S. Lukyanov, K. Lukyanov, N. Gurskaya, E. D. Sverdlov and P. D. Siebert. 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93:6025-6030 crossref(new window)

15.
Elvin, J. A., C. N. Yan and M. M. Matzuk. 2000. Growth differentiation factor-9 stimulates progesterone synthesis in granulosa cells via a prostaglandin E- 2/EP2 receptor pathway. Proc. Natl. Acad. Sci. USA 97:10288-10293 crossref(new window)

16.
Eppig, J. J., K. Wigglesworth and F. L. Pendola. 2002. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc. Natl. Acad. Sci. USA 99:2890-2894 crossref(new window)

17.
Fayad, T., V. Levesque, J. Sirois, D. W. Silversides and J. G. Lussier. 2004. Gene expression profiling of differentially expressed genes in granulosa cells of bovine dominant follicles using suppression subtractive hybridization. Biol. Reprod. 70:523-533 crossref(new window)

18.
Galloway, S. M., K. P. McNatty, L. M. Cambridge, M. P. E. Laitinen, S. Juengel, okiranta, R. J. McLaren, K. Luiro, K. G. Dodds, G. W. Montgomery, A. E. Beattie, G. H. Davis and O. Ritvos. 2000. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25:279-283 crossref(new window)

19.
Hacohen, N., S. Kramer, D. Sutherland, Y. Hiromi and M. A. Krasnow. 1998. Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the drosophila airways. Cell 92:253-263 crossref(new window)

20.
Hyttel, P., T. Fair, H. Callesen and T. Greve. 1997. Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47:23-32 crossref(new window)

21.
Kawamura, K., N. Sato, J. Fukuda, H. Kodama, J. Kumagai, H. Tanikawa, A. Nakamura, Y. Honda, T. Sato and T. Tanaka. 2003. Ghrelin inhibits the development of mouse preimplantation embryos in-vitro. Endocrinology 144:2623-2633 crossref(new window)

22.
Khan, S. M, R. H. Oliver and J. Yeh. 2005. Epidermal growth factor receptor inhibition by tyrphostin 51 induces apoptosis in luteinized granulosa cells. J. Clin. Endocrinol. Metab. 90:469-473 crossref(new window)

23.
Kilsoo, J., Y. K. Eun, C. T. Jin, K. J. Dong, S. K. Cho, J. H. Kim, H. Y. Lee, K. Z. Riu, S. G. Cho and S. P. Park. 2008. Survivin protein expression in bovine follicular oocytes and their in vitro developmental competence. Anim. Reprod. Sci. 108:319-333 crossref(new window)

24.
Matzuk, M. M., K. H. Burns, M. M. Viveiros and J. J. Eppig. 2002. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296:2178-2180 crossref(new window)

25.
Meng, Q. X., H. J. Gao, C. M. Xu, M. Y. Dong, X. Sheng, J. Z. Sheng and H. F. Huang. 2008. Reduced expression and function of aquaporin-3 in mouse metaphase-II oocytes induced by controlled ovarian hyperstimulation were associated with subsequent low fertilization rate. Cell. Physiol. Biochem. 21:123-128 crossref(new window)

26.
Pakarainen, T., F. P. Zhang, L. Nurmi, M. Poutanen and I. Huhtaniemi. 2005. Knockout of luteinizing hormone receptor abolishes the effects of follicle-stimulating hormone on preovulatory maturation and ovulation of mouse Graafian follicles. Mol. Endocrinol. 19:2591-2602 crossref(new window)

27.
Pei, D. S., Y. H. Sun, S. P. Chen, Y. P. Wang, W. Hu and Z. Y. Zhu. 2007. Zebra fish GAPDH can be used as a reference gene for expression analysis in cross-subfamily cloned embryos. Anal. Biochem. 363:291-293 crossref(new window)

28.
Robert, C., F. L. Barnes, I. Hue and M. A. Sirard. 2000. Subtractive hybridization used to identify mRNA associated with the maturation of bovine oocytes. Mol. Reprod. Dev. 57:167-175 crossref(new window)

29.
Schoevers, E. J., B. Colenbrander and B. A. Roelen. 2007. Developmental stage of the oocyte during antral follicle growth and cumulus investment determines in vitro embryo development of sow oocytes. Theriogenology 67:1108-1122 crossref(new window)

30.
Shimizu, T., M. Yokoo, Y. Miyake, H. Sasada and E. Sato. 2004. Differential expression of bone morphogenetic protein 4-6 (BMP-4, -5 and -6) and growth differentiation factor-9 (GDF-9) during ovarian development in neonatal pigs. Domest. Anim. Endocrinol. 27:397-405 crossref(new window)

31.
Sicinski, P., J. L. Donaher, Y. Geng, S. B. Parker, H. Gardner, M. Y. Park, R. Robker, J. S. Richards, L. K. Maginnis, J. D. Biggers, J. J. Eppig, R. T. Bronson, S. J. Elledge and R. A. Weinberg. 1996. Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384:470-474 crossref(new window)

32.
Sirard, M. A. 2001. Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence. Theriogenology 55:1241-1254 crossref(new window)

33.
Vanderhyden, B. C., E. E. Telfer and J. Eppig. 1992. Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol. Reprod. 46:1196-1204 crossref(new window)

34.
Vozzi, C., A. Formenton, A. Chanson, A. Senn, R. Sahli, P. Shaw, P. Nicod, M. Germond and J. A. Haefliger. 2001. Involvement of connexin 43 in meiotic maturation of bovine oocytes. Reproduction 122:619-628 crossref(new window)

35.
Ward, F., B. Enright, D. Rizos, M. Boland and P. Lonergan. 2002. Optimization of in vitro bovine embryo production: Effect of duration of maturation, length of gamete co-incubation, sperm concentration and sire. Theriogenology 57:2105-2117 crossref(new window)

36.
Wassarman, P. M. and D. F. Albertini. 1994. The mammalian ovum. In: The physiology of reproduction (E. Knobil and J. D. Neill), 2nd ed. Raven Press, New York. pp. 79-122

37.
Zeng, F. and R. M. Schultz. 2003. Gene expression in mouse oocytes and preimplantation embryos: use of suppression subtractive hybridization to identify oocyte- and embryospecific genes. Biol. Reprod. 68:31-39 crossref(new window)

38.
Zhang, L., S. Jiang, P. J. Wozniak, X. Yang and R. A. Godke. 1995. Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol. Reprod. Dev. 40:338-344 crossref(new window)