Advanced SearchSearch Tips
Validation of 17 Microsatellite Markers for Parentage Verification and Identity Test in Chinese Holstein Cattle
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Validation of 17 Microsatellite Markers for Parentage Verification and Identity Test in Chinese Holstein Cattle
Zhang, Yi; Wang, Yachun; Sun, Dongxiao; Yu, Ying; Zhang, Yuan;
  PDF(new window)
To develop an efficient DNA typing system for Chinese Holstein cattle, 17 microsatellites, which were amplified in four fluorescent multiplex reactions and genotyped by two capillary electrophoresis injections, were evaluated for parentage verification and identity test. These markers were highly polymorphic with a mean of 8.35 alleles per locus and an average expected heterozygosity of 0.711 in 371 individuals. Parentage exclusion probability with only one sampled parent was approximately 0.999. Parentage exclusion probability when another parent' genotype was known was over 0.99999. Overall probability of identity, i.e. the probability that two animals share a common genotype by chance, was . In a test case of parentage assignment, the 17 loci assigned 31 out of 33 cows to the pedigree sires with 95% confidence, while 2 cows were excluded from the paternity relationship with candidate sires. The results demonstrated the high efficacy of the 17 markers in parentage analysis and individual identification for Chinese Holstein cattle.
Parentage Analysis;Identity Test;Microsatellite;Multiplex PCR;Chinese Holstein;
 Cited by
Botstein, D., R. L. White, M. Skolnick and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am. J. Hum. Genet. 32(3):314-331

Curi, R. A. and C. R. Lopes. 2002. Evaluation of nine microsatellite loci and misidentification paternity frequency in a population of Gyr breed bovines. Brazil J. Vet. Res. Anim. Sci. 39(3): 129-135

FAO/ISAG. 1993. Secondary Guidelines: Measurement of Domestic Animal Diversity (MoDAD): Recommended Microsatellite Markers.(

FAO/ISAG. 2004. Secondary Guidelines: Measurement of Domestic Animal Diversity (MoDAD): New Recommended Microsatellite Markers. (

Herraez, D. L., H. Schafer, J. Mosner, H. R. Fries and M. Wink. 2005. Comparison of microsatellite and single nucleotide polymorphism markers for the genetic analysis of a galloway cattle population. Z. Naturforsch. 60c(7-8):637-643

ISAG Conference. 2006. Porto Seguro, Brazil. Cattle Molecular Markers and Parentage Testing Workshop (

ISAG Conference. 2008. Amsterdam, The Netherlands. Cattle Molecular Markers and Parentage Testing Workshop. (

Jamieson, A. and S. C. S. Taylor. 1997. Comparisons of three probability formulae for parentage exclusion. Anim. Genet. 28(6):397-400 crossref(new window)

Kalinowski, S. T., M. L. Taper and T. C. Marshall. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16(5):1099-1006 crossref(new window)

Kaplinski, L., R. Andreson, T. Puurand and M. Remm. 2005. MultiPLX: automatic grouping and evaluation of PCR primers. Bioinformatics 21(8):1701-1702 crossref(new window)

Ozkan, E., M. I. Soysal, M. Ozder-, E. Koban, O. Sahin and İ. Togan. 2009. Evaluation of parentage testing in the Turkish Holstein population based on 12 microsatellite loci. Livest. Sci. 124(1-3):101-106 crossref(new window)

Peakall, R. and P. E. Smouse. 2006. GenAlEx, Genetic Analysis in Excel, Version 6. School of Botany and Zoology, Australian National University (

Radko, A., A. Zyga, T. Zabek and E. Slota. 2005. Genetic variability among Polish Red, Hereford and Holstein-Friesian cattle raised in Poland based on analysis of microsatellite DNA sequences. J. Appl. Genet. 46(1):89-91

Rahimi, G., A. Nejati-Javaremi, D. Saneei and K. Olek. 2006. Estimation of genetic variation in Holstein young bulls of Iran AI station using molecular markers. Asian-Aust. J. Anim. Sci. 19(4):463-467

Rehout, V., E. Hradecka and J. Citek. 2006. Evaluation of parentage testing in the Czech population of Holstein cattle. Czech. J. Anim. Sci. 51(12):503-509

Ron, M., Y. Blanc, M. Band, E. Ezra and J. I. Weller. 1996. Misidentification rate in the Israeli dairy cattle population and its implications for genetic improvement. J. Dairy Sci. 79(4): 676-681 crossref(new window)

Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, NY

Sanders, K., J. Bennewitz and E. Kalm. 2006. Wrong and missing sire information affects genetic gain in the Angeln dairy cattle population J. Dairy Sci. 89(1):315-321 crossref(new window)

Tian, F., D. Sun and Y. Zhang. 2008. Establishment of paternity testing system using microsatellite markers in Chinese Holstein. J. Genet. Genomics 35(5):279-284 crossref(new window)

Visscher, P. M., J. A. Woolliams, D. Smith and J. L. Williams. 2002. Estimation of pedigree errors in the UK dairy population using microsatellite markers and the impact on selection. J. Dairy Sci. 85(9):2368-2375 crossref(new window)

Weller, J. I., E. Feldmesser, M. Golik, I. Tager-Cohen, R. Domochovsky, O. Alus, E. Ezra and M. Ron. 2004. Factors affecting incorrect paternity assignment in the Israeli Holstein population. J. Dairy Sci. 87(8):2627-2640 crossref(new window)

Zhang, Y., D. X. Sun, Y. Yu and Y. Zhang. 2008. Optimized multiplex PCR sets and genetic polymorphism of 30 microsatellite loci in domestic buffalo (In Chinese). Hereditas (Beijing). 30(1):59-64