Advanced SearchSearch Tips
Evaluation of Multi-microbial Probiotics Produced by Submerged Liquid and Solid Substrate Fermentation Methods in Broilers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Evaluation of Multi-microbial Probiotics Produced by Submerged Liquid and Solid Substrate Fermentation Methods in Broilers
Shim, Y.H.; Shinde, P.L.; Choi, J.Y.; Kim, J.S.; Seo, D.K.; Pak, J.I.; Chae, B.J.; Kwon, I.K.;
  PDF(new window)
Two experiments were conducted to evaluate multi-microbe submerged liquid (SLF) and solid substrate (SSF) fermented probiotic products in broilers. The SLF and SSF probiotics were comprised of Lactobacillus acidophilus ( and cfu/g), Bacillus subtilis ( and cfu/g), Saccharomyces cerevisiae ( and cfu/g) and Aspergillus oryzae ( and cfu/g), respectively. In Exp. 1, 640 day-old Ross chicks were allotted to 4 treatments, each comprising 4 replicates (40 chicks/replicate). The basal diet was prepared without any antimicrobials (negative control, NC), and 20 mg/kg avilamycin (positive control, PC), 0.3% SLF and 0.3% SSF probiotics were added to the basal diets as treatments. Birds fed PC and SSF diets showed improved (p<0.001) overall weight gain and F/G than birds fed NC and SLF diets; whereas, birds fed SLF diet had better weight gain and F/G than birds fed NC diet. Retention of CP was higher (p<0.05) in birds fed the SSF diet than birds fed PC, SLF and NC diets. Birds fed the SLF diet tended to have higher (p<0.10) cecal total anaerobic bacteria than birds fed PC and NC diets; whereas, lesser cecal coliforms were noticed in birds fed PC, SLF and SSF diets than birds fed the NC diet. In Exp. 2, 640 day-old Ross chicks were randomly allotted to 4 treatments in a factorial arrangement. Each treatment had 4 replicates (40 chicks/replicate). Two different multi-microbe probiotic products (0.3% SLF or SSF) each with two different antibiotics (10 mg/kg colistin, or 20 mg/kg avilamycin) were used as dietary treatments. Birds fed the SSF diet had greater weight gain (p<0.001), better F/G (p<0.05), greater retention of energy (p<0.001) and protein (p<0.05), and lesser cecal Clostridium (d 35) than birds fed SLF diet. Birds fed the colistin-supplemented diet had less (p<0.01) cecal coliforms when compared with birds fed the avilamycin diet. Additionally, birds fed the avilamycin diet had greater energy retention (p<0.05) than birds fed the colistin diet. Thus, the results of this study suggest the multi-microbe probiotic product prepared by a solid substrate fermentation method to be superior to the probiotic product prepared by submerged liquid fermentation; moreover, feeding of probiotics with different antibiotics did not elicit any interaction effect between probiotic and antibiotic.
Broilers;Multi-microbial Probiotics;Fermentation Methods;Performance;Nutrient Retention;Cecal Microflora;
 Cited by
Effects of Origins of Soybean Meal on Growth Performance, Nutrient Retention and Excreta Microflora of Broilers,Ku, Yun;Ingale, Santosh Laxman;Kim, Jin Soo;Kim, Kwang Hyun;Lee, Su Hyup;Chae, Byung Jo;

한국가금학회지, 2013. vol.40. 2, pp.129-138 crossref(new window)
Effect of Supplementation of Bacillus subtilis LS 1-2 Grown on Citrus-juice Waste and Corn-soybean Meal Substrate on Growth Performance, Nutrient Retention, Caecal Microbiology and Small Intestinal Morphology of Broilers,Sen, Sinol;Ingale, S.L.;Kim, J.S.;Kim, K.H.;Kim, Y.W.;Khong, Chou;Lohakare, J.D.;Kim, E.K.;Kim, H.S.;Kwon, I.K.;Chae, B.J.;

Asian-Australasian Journal of Animal Sciences, 2011. vol.24. 8, pp.1120-1127 crossref(new window)
Effects of Origins of Soybean Meal on Growth Performance, Nutrient Digestibility and Fecal Microflora of Growing Pigs,Ku, Yun;Ingale, Santosh Laxman;Kim, Jin Soo;Lee, Su Hyup;Kim, Young Hwa;Chae, Byung Jo;

Journal of Animal Science and Technology, 2013. vol.55. 4, pp.263-272 crossref(new window)
AOAC. 1990. Official Method of Analysis. 15th edn. Association of Official Analytical Chemists, Arlington, VA

Badu, K. R. and T. Satyanarayana. 1995. α-Amylase production by thermophilic Bacillus coagulans in solid state fermentation. Process Biochem. 30:305-309 crossref(new window)

Barrow, P. A. 1992. Probiotics for chickens. In: Probiotics: The Scientific Basis (Ed. R. Fuller). Chapman and Hall, London. pp. 225-257

Battan, B., J. Sharma and R. C. Kuhad. 2006. High-level xylanase production by alkaliphilic Bacillus pumilus ASH under solidstate fermentation. World J. Microbiol. Biotechnol. 22:1281-1287 crossref(new window)

Cavazzoni, V., A. Adami and C. Castrovilli. 1998. Performance of broiler chicken supplemented with Bacillus coagilans as probiotic. Br. Poult. Sci. 39:526-529 crossref(new window)

Chen, K.-L., W.-L. Kho, S.-H. You, R.-H. Yeh, S.-W. Tang and C.-W. Hsieh. 2009. Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae mixed fermented feed on the enhanced growth performance of broilers. Poult. Sci. 88:309-315 crossref(new window)

Choi, J. Y., P. L. Shinde, I. K. Kwon, Y. H. Song and B. J. Chae. 2009. Effect of wood vinegar on the performance, nutrient digestibility and intestinal microflora in weanling pigs. Asian- Aust. J. Anim. Sci. 22:267-274

Denev, S. A. 2006. Effect of different growth promoters on the cecal microflora and performance of broiler chickens. Bulg. J. Agric. Sci. 12:461-474

Dibner, J. J. and J. D. Richards. 2005. Antibiotic growth promoters in agriculture: history and mode of action. Poult. Sci. 84:634-643

El-bendary, M. A. 2006. Bacillus thuringiensis and Bacillus sphaericus biopesticides production. J. Basic Microbiol. 46:158-170 crossref(new window)

Fenton, T. W. and M. Fenton. 1979. An improved method for chromic oxide determination in feed and feces. Can. J. Anim. Sci. 59:631-634 crossref(new window)

Ferket, P. R. 2004. Alternatives to antibiotics in poultry production: responses, practical experience and recommendations. In: Nutritional biotechnology in the feed and food industries (Ed. T.P. Lyons and K.A. Jacques)

Nottingham University Press, Nottingham. pp. 57-67. Fuller, R. 1989. Probiotics in man and animals - a review. J. Appl. Bacterol. 66:365-378

Graminha, E. B. N., A. Z. L. Goncalves, R. D. P. B. Pirota, M. A. A. Balsalobre, R. Da Silva and E. Gomes. 2008. Enzyme production by solid-state fermentation: application to animal nutrition. Anim. Feed Sci. Technol. 144:1-22 crossref(new window)

Hu, J., W. Lu, C. Wang, R. Zhu and J. Qiao. 2008. Characteristics of solid-state fermented feed and its effects on performance and nutrient digestibility in growing-finishing pigs. Asian-Aust. J. Anim. Sci. 21:1635-1641

Jernigan, M. A., R. D. Miles and A. S. Arafa. 1985. Probiotics in poultry nutrition - a review. World's Poult. Sci. J. 41:99-107 crossref(new window)

Jin, L. Z., Y. W. Ho, N. Abdullah and S. Jalaudin. 1997. Probiotics in poultry: modes of action. World's Poult. Sci. J. 53:351-368 crossref(new window)

Kabir, S. M. L., M. M. Rahman, M. B. Rahman, M. M. Rahman and S. U. Ahmed. 2004. The dynamics of probiotics on growth performance and immune response in broilers. Int. J. Poult. Sci. 3:361-364 crossref(new window)

Line, E. J., S. J. Bailey, N. A. Cox, N. J. Stern and T. Tompkins. 1998. Effect of yeast-supplemented feed on Salmonella and Campylobacter populations in broilers. Poult. Sci. 77:405-410

Lu, M. Y., I. S. Maddox and J. D. Brooks. 1998. Application of a multi-layer packed bed reactor to citric acid production in solid state fermentation using Aspergillus niger. Process Biochem. 33:117-123 crossref(new window)

Mitchell, D. A. and B. K. Lonsane. 1992. Definition characteristics and potential. In: Solid substrate cultivation (Ed. H. W. Doelle, D. A. Mitchell and C. E. Rolz). Elsevier, London. pp. 1-16

Moore, S. 1963. On the determination of cystine as cysteric acid. J. Biol. Sci. 238:235

Mountzouris, K. C., P. Tsirtsikos, E. Kalamara, S. Nitsch, G. Schatzmayr and K. Fegeros. 2007. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult. Sci. 86:309-317

National Research Council. 1994. Nutrient Requirements of Poultry. 9th Ed. National Academy Press, Washington, DC

Nousiainen, J. and J. Setala. 1993. Lactic acid bacteria as animal probiotics. In: Lactic acid bacteria (Ed. S. Salminen and A. won Wright). Marcel Dekker, New York. pp. 315-356

Ohh, S. H., P. L. Shinde, Z. Jin, J. Y. Choi, T.-W. Hahn, H. T. Lim, G. Y. Kim, Y. Park, K.-S. Hahm and B. J. Chae. 2009. Potato (Solanum tuberosum L. cv. Gogu valley) protein as an antimicrobial agent in the diets of broilers. Poult. Sci. 88:1227-1234 crossref(new window)

Owings, W. J., D. L. Reynolds, R. J. Hasiak and P. R. Ferket. 1990. Influence of a dietary supplementation with Streptococcus faecium M-74 on broiler body weight, feed conversion, carcass characteristics and intestinal microbial colonization. Poult. Sci. 69:1257-1264

Pascual, M., M. Hugas, J. I. Badiola, J. M. Monfort and M. Garriga. 1999. Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Appl. Environ. Microbiol. 65:4981-4986

Patel, H. M., R. Wang, O. Chandrashekar, S. S. Pandiella and C. Webb. 2004. Proliferation of Lactobacillus plantarum in solidstate fermentation of oats. Biotechnol. Prog. 20:110-116 crossref(new window)

Pollman, D. S., D. M. Danielson and E. R. Peo. 1980. Effects of microbial feed additives on performance of starter and growing-finishing pigs. J. Anim. Sci. 51:577-581

Raimbault, M. 1998. General and micorbiological aspects of solid substrate fermentation. Electron. J. Biotechnol. 1(3):1-15

Robinson, T., D. Singh and P. Nigam. 2001. Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl. Microbiol. Biotechnol. 55:284-289 crossref(new window)

Ross, R. P., C. Desmond, G. F. Fitzgerald and C. Stanton. 2005. Overcoming the technological hurdles in the development of probiotic foods. J. Appl. Microbiol. 98:1410-1417 crossref(new window)

Sanders, M. E. and J. H. Veld. 1999. Bringing a probiotic containing functional food to the market: microbiological, product, regulatory and labeling issues. Antonie van Leeuwenhoek 76: 93-315

SAS. 1996. SAS/STAT. User's Guide: Statistics (Release 6.12 Ed.). SAS Inst. Inc., Cary. NC

Stavric, S. and E. T. Kornegay. 1995. Microbial probiotic for pigs and poultry. In: Biotechnology in animal feeds and animal feeding (Ed. R. J. Wallace and A. Chesson). VCH, Weinheim, pp. 205-231

Tannock, G. W. 2001. Molecular assessment of intestinal microflora. Am. J. Clin. Nutr. 73:410-414

Timmerman, H. M., C. J. M. Koningb, L. Mulderc, F. M. Romboutsd and A. C. Beynen. 2004. Monostrain, multistrain and multispecies probiotics: A comparison of functionality and efficacy. Int. J. Food Microbiol. 96:219-233 crossref(new window)

Weitnauer, G., A. Muhlenweg, A. Trefzer, D. Hoffmeister, R. D. Sussmuth, G. Jung, K. Welzel, A. Vente, U. Girreser and A. Bechthold. 2001. Biosynthesis of the orthosomycin antibiotic avilamycin A: deductions from the molecular analysis of the avi biosynthetic gene cluster of Streptomyces viridochromogenes Tu57 and production of new antibiotics. Chem. Biol. 8:569-581 crossref(new window)

Wellenreiter, R. H., D. H. Mowrey, L. A. Stobbs and J. A. D'assonville. 2000: Effects of avilamycin on performance of broiler chickens. Vet. Ther. 1(2):118-124

Ziv, G. 1981. Clinical pharmacology of polymyxins. J. Am. Vet. Med. Assoc. 179:711-715