Advanced SearchSearch Tips
Effect of Sex Steroid Hormones on Bovine Myogenic Satellite Cell Proliferation, Differentiation and Lipid Accumulation in Myotube
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Sex Steroid Hormones on Bovine Myogenic Satellite Cell Proliferation, Differentiation and Lipid Accumulation in Myotube
Lee, E.J.; Bajracharya, P.; Jang, E.J.; Chang, J.S.; Lee, H.J.; Hong, S.K.; Choi, I.;
  PDF(new window)
Myogenic satellite cells (MSCs) are adult stem cells that activate and differentiate into myotubes. These stem cells are multipotent as they transdifferentiate into adipocyte-like cells, nerve cells and osteocytes. The effects of steroid hormones ( and testosterone) were studied as a further step toward understanding the mechanism of MSCs proliferation and differentiation. In this study, MSCs were grown continuously for 87 days, implying that there may be a group of MSCs that continue to proliferate rather than undergoing differentiation. Isolated MSCs were cultured in Dulbecco's Modified Eagle's Medium supplemented with adult male, female or castrated bovine serum to observe the effect of steroid hormones on MSC proliferation. Cell proliferation was the highest in cultures supplemented with male serum followed by female and castrated serum. The positive effect of male hormone on MSC proliferation was confirmed by the observation of testosterone-mediated increased proliferation of cells cultured in medium supplemented with castrated serum. Furthermore, steroid hormone treatment of MSCs increased lipid accumulation in myotubes. Oil-Red-O staining showed that 17-estradiol () treatment avidly increased lipid accumulation, followed by +testosterone and testosterone alone. To our knowledge, this is the first report of lipid accumulation in myotubes due to steroids in the absence of an adipogenic environment, and the effect of steroid hormones on cell proliferation using different types of adult bovine serum, a natural hormonal system. In conclusion, we found that sex steroids affect MSCs proliferation and differentiation, and lipid accumulation in myotubes.
Myogenic Satellite Cells;Steroids;Serum;Stem Cells;Bovine;
 Cited by
Gene expression profiles analyzed by DNA sequencing of cDNA clones constructed from porcine preadipocytes and adipocytes,;;;;;;;;;;;;

Genes and Genomics, 2012. vol.34. 2, pp.125-131 crossref(new window)
Meeting the meat: delineating the molecular machinery of muscle development,;;;;

Journal of Animal Science and Technology, 2016. vol.58. 5, pp.18.1-18.10 crossref(new window)
Gene expression profiles analyzed by DNA sequencing of cDNA clones constructed from porcine preadipocytes and adipocytes, Genes & Genomics, 2012, 34, 2, 125  crossref(new windwow)
Effect of porcine placenta steroid extract on myogenic satellite cell proliferation, transdifferentiation, and lipid accumulation, In Vitro Cellular & Developmental Biology - Animal, 2012, 48, 5, 326  crossref(new windwow)
A metabolomics study of the inhibitory effect of 17-beta-estradiol on osteoclast proliferation and differentiation, Molecular BioSystems, 2015, 11, 2, 635  crossref(new windwow)
Meeting the meat: delineating the molecular machinery of muscle development, Journal of Animal Science and Technology, 2016, 58, 1  crossref(new windwow)
Allen, R. E. and L. L. Rankin. 1990. Regulation of satellite cells during skeletal muscle growth and development. Proc. Soc. Exp. Biol. Med. 194:81-86

Allen, D. M., L. E. Chen, A. V. Seaber and J. R. Urbaniak. 1997. Calcitonin gene-related peptide and reperfusion injury. J. Orthop. Res. 15:243-248 crossref(new window)

Arnold, A. M., J. M. Peralta and M. L. Thonney. 1996. Ontogeny of growth hormone, insulin-like growth factor-I, estradiol and cortisol in the growing lamb: effect of testosterone. J. Endocrinol. 150:391-399 crossref(new window)

Asakura, A., M. Komaki and M. Rudnicki. 2001. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245-253 crossref(new window)

Asakura, A., P. Seale, A. Girgis-Gabardo and M. A. Rudnicki. 2002. Myogenic specification of side population cells in skeletal muscle. J. Cell Biol. 159:123-134 crossref(new window)

Bischoff, R. and C. Heintz. 1994. Enhancement of skeletal muscle regeneration. Dev. Dyn. 201:41-54

Boland, R., A. Vasconsuelo, L. Milanesi, A. C. Ronda and A. R. de Boland. 2008. 17beta-estradiol signaling in skeletal muscle cells and its relationship to apoptosis. Steroids 73:859-863 crossref(new window)

Buckingham, M., L. Bajard, T. Chang, P. Daubas, J. Hadchouel, S. Meilhac, D. Montarras, J. Hadchouel, S. Meilhac, D. Montarras, D. Rocancourt and F. Relaix. 2003. The formation of skeletal muscle: from somite to limb. J. Anat. 202:59-68 crossref(new window)

Chen, J. C. and D. J. Goldhamer. 2003. Skeletal muscle stem cells. Reprod. Biol. Endocrinol. 13(1):101

Choi, I., L. J. Gudas and B. S. Katzenellenbogen. 2000. Regulation of keratin 19 gene expression by estrogen in human breast cancer cells and identification of the estrogen responsive gene region. Mol. Cell Endocrinol. 164:225-237 crossref(new window)

Cornelison, D. D. and B. J. Wold. 1997. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev. Biol. 191:270-283 crossref(new window)

Costa, M. L., R. Escaleira, A. Cataldo, F. Oliveira and C. S. Mermelstein. 2004. Desmin: molecular interactions and putative functions of the muscle intermediate filament protein. Braz. J. Med. Biol. Res. 37:1819-1830 crossref(new window)

Dehm, S. M. and D. J. Tindall. 2007. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol. Endocrinol. 21:2855-2863 crossref(new window)

Enns, D. L., S. Iqbal and P. M. Tiidus. 2008. Oestrogen receptors mediate oestrogen-induced increases in post-exercise rat skeletal muscle satellite cells. Acta. Physiol. 194:81-93 crossref(new window)

Fux, C., B. Mitta, B. P. Kramer and M. Fussenegger. 2004. Dualregulated expression of C/EBP-alpha and BMP-2 enables differential differentiation of C2C12 cells into adipocytes and osteoblasts. Nucleic Acids Res. 2;32:e1 crossref(new window)

Garriga, J., E. Adanero, J. Fernandez-Sola, A. Urbano-Marquez and R. Cusso. 2000. Ethanol inhibits skeletal muscle cell proliferation and delays its differentiation in cell culture. Alcohol and Alcohol. 35:236-241 crossref(new window)

Goodpaster, B. H. and D. E. Kelley. 1998. Role of muscle in triglyceride metabolism. Curr. Opin. Lipidol. 9:231-236

Gupta, V., S. Bhasin, W. Guo, R. Singh, R. Miki, P. Chauhan, K. Choong, T. Tchkonia, N. K. Lebrasseur, J. N. Flanagan, J. A. Hamilton, J. C. Viereck, N. S. Narula, J. L. Kirkland and R. Jasuja. 2008. Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Mol. Cell. Endocrinol. 16:32-40 crossref(new window)

Hasty, P., A. Bradley, J. H. Morris, D. G. Edmondson, J. M. Venuti, E. N. Olson and W. H. Klein. 1993. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 5:501-506 crossref(new window)

Hawke, T. J. and D. J. Garry. 2001. Myogenic satellite cells:physiology to molecular biology. J. Appl. Physiol. 91:534-551

Heine, P. A., J. A. Taylor, G. A. Iwamoto, D. B. Lubahn and P. S. Cooke. 2000. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc. Natl. Acad. Sci. USA. 7:12729-12734

Hu, E., P. Tontonoz and B. M. Spiegelman. 1995. Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc. Natl. Acad. Sci. USA. 10:9856-9860

Hulver, M. W., J. R. Berggren, R. N. Cortright and Dudek. 2003. Skeletal muscle lipid metabolism with obesity. Am. J. Physiol. Endocrinol. Metab. 284:E741-E747 crossref(new window)

Inoue, K., S. Yamasaki, T. Fushiki, Y. Okada and E. Sugimoto. 1994. Androgen receptor antagonist suppresses exerciseinduced hypertrophy of skeletal muscle. Eur. J. Appl. Physiol. Occup. Physiol. 69:88-91 crossref(new window)

Ishido, M., K. Kami and M. Masuhara. 2004. Localization of MyoD, myogenin and cell cycle regulatory factors in hypertrophying rat skeletal muscles. Acta. Physiol. Scand. 180:281-289 crossref(new window)

Johnson, B. J., P. T. Anderson, J. C. Meiske and W. R. Dayton. 1996. Effect of a combined trenbolone acetate and estradiol implant on steroid hormone levels, feedlot performance, carcass characteristics and carcass composition of feedlot steers. J. Anim. Sci. 74:363-371

Kahlert, S., C. Groh$\acute{a}$, R. H. Karas, K. L$\ddot{o}$bbert, L. Neyses and H. Vetter. 1997. Effects of estrogen on skeletal myoblast growth. Biochem. Biophys. Res. Commun. 17:373-378 crossref(new window)

Kamanga-Sollo, E., M. E. White, K. Y. Chung, B. J. Johnson and W. R. Dayton. 2008a. Potential role of G-protein-coupled receptor 30 (GPR30) in estradiol-17$\beta$-stimulated IGF-I mRNA expression in bovine statellite cell cultures. Domest. Anim Endocrinol. 35:254-262 crossref(new window)

Kamanga-Sollo, E., M. E. White, M. R. Hathaway, K. Y. Chung, B. J. Johnson and W. R. Dayton. 2008b. Roles of IGF-1 and the estrogen, androgen and IGF-1 receptors in estradiol-17β- and trenbolone acetate-stimulated proliferation of cultured bovine satellite cells. Domest. Anim. Endocrinol. 35: 88-97 crossref(new window)

Kook, S. H., K. C. Choi, Y. O. Son, K. Y. Lee, I. H. Hwang, H. J. Lee, J. S. Chang, I. H. Choi and J. C. Lee. 2006. Satellite cells isolated from adult Hanwoo muscle can proliferate and differentiate into myoblasts and adipose-like cells. Mol. Cells 22:239-245

Lee, D. K. 2002. Androgen receptor enhances myogenin expression and accelerates differentiation. Biochem. Biophys. Res. Commun. 294:408-413 crossref(new window)

Lee, E. J., J. Choi, J. H. Hyun, K. H. Cho, I. H. Hwang, H. J. Lee, J. S. Chang and I. Choi. 2007. Steroid effects on cell proliferation, differentiation and steroid receptor gene expression in adult bovine muscle satellite cells. Asian-Aust. J. Anim. Sci. 20:501-510

McKeehan, W. L., P. S. Adams and M. P. Rosser. 1984. Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res. 44:1998-2010

Meyer, H. H. and M. Rapp. 1985. Estrogen receptor in bovine skeletal muscle. J. Anim. Sci. 60:294-300

Mooradian, A. D., J. E. Morley and S. G. Korenman. 1987. Biological actions of androgens. Endocr. Rev. 8:1-28 crossref(new window)

Moss, F. P. and C. P. Leblond. 1971. Satellite cells as the source of nuclei in muscles of growing rats. Anat. Rec. 170:421-435 crossref(new window)

Ricketts, M. L., D. D. Moore, W. J. Banz, O. Mezei and N. F. Shay. 2005. Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review. J. Nutir. Biochem. 16: 321-330 crossref(new window)

Singh, N. K., H. S. Chae, I. H. Hwang, Y. M. Yoo, C. N. Ahn, S. H. Lee, H. J. Lee, H. J. Park and H. Y. Chung. 2007. Transdifferentiation of porcine satellite cells to adipoblasts with ciglitizone. J. Anim. Sci. 85:1126-1135 crossref(new window)

Sinha-Hikim, I., S. M. Roth, M. I. Lee and S. Bhasin. 2003. Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am. J. Physiol. Endocrinol. Metab. 285:E197-205

Snochowski, M., T. Saartok, E. Dahlberg, E. Eriksson J. A. Gustafsson. 1981. Androgen and glucocorticoid receptors in human skeletal muscle cytosol. J. Steroid Biochem. 14:765-771 crossref(new window)

Tajbakhsh, S., D. Rocancourt and M. Buckingham. 1996. Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 21:266-270 crossref(new window)

Vasconsuelo, A., L. Milanesi and R. Boland. 2008. 17Betaestradiol abrogates apoptosis in murine skeletal muscle cells through estrogen receptors: role of the phosphatidylinositol 3- kinase/Akt pathway. Endocrinology 196(2):385-397 crossref(new window)

Van Barneveld, R. J. 2003. Modern pork production - Balancing efficient growth and feed conversion with product quality requirements and consumer demands. Asia Pac. J. Clin. Nutr. 12 Supp1:S31

Veldhuis, J. D., J. N. Roemmich, E. J. Richmond, A. D. Rogol, J. C. Lovejoy, M. Sheffield-Moore, N. Mauras and C. Y. Bowers. 2005. Endocrine control of body composition in infancy, childhood, and puberty. Endocr. Rev. 26:114-146 crossref(new window)

Wheeler, T. L., L. V. Cundiff and R. M. Koch. 1994. Effect of marbling degree on beef palatability in Bos taurus and Bos indicus cattle. J. Anim. Sci. 72:3145-151

Zammit, P. S., J. J. Carvajal, J. P. Golding, J. E. Morgan, D. Summerbell, J. Zolnerciks, T. A. Partridge, P. W. Rigby and J. R. Beauchamp. 2004. Myf5 expression in satellite cells and spindles in adult muscle is controlled by separate genetic elements. Dev. Biol. 273:454-465 crossref(new window)

Zammit, P. and J. Beauchamp. 2001. The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation 68:193-204 crossref(new window)