Advanced SearchSearch Tips
Effects of Protease-resistant Antimicrobial Substances Produced by Lactic Acid Bacteria on Rumen Methanogenesis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Protease-resistant Antimicrobial Substances Produced by Lactic Acid Bacteria on Rumen Methanogenesis
Reina, Asa; Tanaka, A.; Uehara, A.; Shinzato, I.; Toride, Y.; Usui, N.; Hirakawa, K.; Takahashi, J.;
  PDF(new window)
Effects of protease-resistant antimicrobial substances (PRA) produced by Lactobacillus plantarum and Leuconostoc citreum on rumen methanogenesis were examined using the in vitro continuous methane quantification system. Four different strains of lactic acid bacteria, i) Lactococcus lactis ATCC19435 (Control, non-antibacterial substances), ii) Lactococcus lactis NCIMB702054 (Nisin-Z), iii) Lactobacillus plantarum TUA1490L (PRA-1), and iv) Leuconostoc citreum JCM9698 (PRA-2) were individually cultured in GYEKP medium. An 80 ml aliquot of each supernatant was inoculated into phosphate-buffered rumen fluid. PRA-1 remarkably decreased cumulative methane production, though propionate, butyrate and ammonia N decreased. For PRA-2, there were no effects on and production and fermentation characteristics in mixed rumen cultures. The results suggested that PRA-1 reduced the number of methanogens or inhibited utilization of hydrogen in rumen fermentation.
Methane Production;Lactic Acid Bacteria;In vitro Fermentation;
 Cited by
Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan,Takahashi, Junichi;

Asian-Australasian Journal of Animal Sciences, 2011. vol.24. 2, pp.285-294 crossref(new window)
Aslim, B., Z. N. Yuksekdag, E. Sarikaya and Y. Beyatli. 2005. Determination of the bacteriocin-like substances produced by some lactic acid bacteria isolated from Turkish dairy products. LWT 38:691-694 crossref(new window)

Aymerich, M. T., M. Garriga, J. M. Monfort, I. Nes and M. Hugas. 2000. Bacteriocin-producing lactobacilli in Spanish-style fermented sausages: haracterization of bacteriocins. Food Microbiol. 17:33-45 crossref(new window)

Brijesh, K. T., P. V. Vasilis, P. O. D. Colm, M. Kasiviswanathan, B. Paula and P. J. Cullen. 2009. Applivation of natural antimicrobials for food preservation. J. Agric. Food Chem. 57: 5987-6000 crossref(new window)

Callaway, T. R., M. S. Alexandra, Carneiro De Melo and J. B. Russell. 1997. The effect of nisin and monensin on ruminal fermentations in vitro. Curr Microbiol. 35:90-96 crossref(new window)

Chen, H. and D. G. Hoocver. 2003. Bacteriocins and their food applications. CRFSFS 12:82-99 crossref(new window)

Conway, E. J. and E. O'Malley. 1942. Microdiffusion methods:ammonia and urea using buffered absorbents (revised methods for ranges greater than 10 $\mu$g N). Biochem. J. 36:655-661

Daeschel, M. A., M. C. Mckenny and L. C. McDonald. 1990. Bacteriocidal activity of Lactobacillus plantarum C11. Food Microbiol. 7:91-99 crossref(new window)

Delves-Broughton, J., P. Blackburn, R. Evans and J. hugenholtz. 1996. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69:193-202 crossref(new window)

Enan, G., A. A. El-Essawy, M. Uyttendaele and J. Debevere. 1996. Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage:characterization, production and bactericidal action of plantarcin UG1. Int. J. Food. Microbiol. 30:189-215 crossref(new window)

Ennahar, S., K. Sonomoto and A. Ishizaki. 1999. Class IIa bacteriocins from lactic acid bacteria: Antibacterial activity and food preservation. J. Biosci. Bioeng. 87:705-716 crossref(new window)

Farkas-Himsley, H. 1980. Bacteriocins-are they broad-spectrum antibiotics? J. Antimicrob. Chemother. 6:424-426 crossref(new window)

Garriga, M., M. Hugas, T. Aymerich and J. M. monfort. 1993. Bacteriocinocinogenic activity of lactobacilli from fermented sausages. J. Appl. Bacteriol. 75:142-148

Gonz$\'{a}$lez, B., P. Arca, B. Mayo and J. E. Su$\'{a}$rez. 1994. Detection, purification and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin. Appl. Environ. Microbiol. 6:2158-2163

Green, S. J. and D. Minz. 2005. Suicide Polymerase Endonuclease Restriction, a Novel Technique for Enhancing PCR Amplification of Minor DNA Templates. Appl. Environ. Microbiol. 71:4721-4727 crossref(new window)

Guan, H., K. M. Wittenberg, K. H. Ominski and D. O. Krause. 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci. 84:1896-1906 crossref(new window)

Jim$\'{e}$nez-D$\'{i}$az, R., R. M. Rios-S$\'{a}$nchez, M. Desmazeaud, J. L. Ruiz-Barba and J. C. Piard. 1993. Plantaricin S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl. Environ. Microbiol. 59:1416-1424

Johnson, K. A. and D. E. Johnson. 1995. Methane emission from cattle. J. Anim. Sci. 73:2483-2492

Kalmokoff, M. L., F. Bartlett and R. M. Teather. 1996. Are ruminal bacteria armed with bacteriocins? J. Dairy Sci. 79:2297-2306 crossref(new window)

Kelly, W. J., R. V. Asmundson and C. M. Huang. 1996. Characterization of plantaricin KW30, a bacteriocin produced by Lactobacillus plantarum. J. Appl. Bacteriol. 81:657-662

Leal, M. V., M. Baras, J. L. Ruiz-Barba, B. Floriano and R. Jimenez-Diaz. 1998. Bacteriocin production and competitiveness of Lactobacillus plantarum LPCO10 in olive juice broth, a culture medium obtained from olives. Int. J. Food. Microbiol. 43:129-134 crossref(new window)

MacDougall, E. I. 1948. Studies on ruminal saliva 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109

Mantovani, H. C. and J. B. Russell. 2002. The ability of a bacteriocin of streptococcus bovis HC5 (bovicin HC5) to inhibit clostridium aminophilum, an obligate amino acid fermenting bacterium from the rumen. Anaerobe 8:247-252 crossref(new window)

McAuliffe, O., R. P. Ross and C. Hill. 2001. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 25:285-308 crossref(new window)

Muyzer, G., E. C. De waal and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700

Mwenya, B., C. Sar, B. Pen, R. Morikawa, K. Takaura, S. Kogawa, K. Kimura, K. Umetsu and J. Takahashi. 2006. Effects of feed additives on ruminal methanogenesis and anaerobicfermentation of manure in cows and steers. In:Greenhouse Gases and Animal Agriculture (Ed. C. R. Soliva, J. Takahashi and M. Kreuzer). Amsterdam. ELSEVIER B.V. pp. 209-212

Nakatsu, C. H., V. Torsvik and L. ${\O}$vreas. 2000. Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci. Soc. Am. J. 64:1382-1388 crossref(new window)

${\O}$rskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. J. Agric. Sci. Camb. 92:499-503 crossref(new window)

Rekhif, N., A. Atrih and G. Lefebvre. 1995. Activity of plantaricin SA6, a bacteriocin produced by Lactobacillus plantarum SA6 isolated from fermented sausage. J. Appl. Bacteriol. 78:349-358

Sauer, F. D., V. Fellner, R. Kinsman, J. K. Kramer, H. A. Jackson, A. J. Lee and S. Chen. 1998. Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. J. Anim. Sci. 76:906-914

Santoso, B., B. Mwenya, C. Sar, Y. Gamo, T. Kobayashi, R. Morikawa, K. Kimura, H. Mizukoshi and J. Takahashi. 2004. Effects of supplementing galacto- oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. Livest. Prod. Sci. 91:209-217 crossref(new window)

Sar, C., B. Mwenya, B. Santoso, K. Takaura, R. Morikawa, N. Isogai, Y. Asakura, Y. Toride and J. Takahasi. 2005a. Effect of Escherichia coli W3110 on ruminal methanogenesis and nitrate/nitrite reduction in vitro. Anim. Feed Sci. Technol. 118:295-306 crossref(new window)

Sar, C., B. Mwenya, B. Pen, R. Morikawa, K. Takaura, T. Kobayashi and J. Takahashi. 2005b. Effect of nisin on ruminal methane production and nitrate/nitrite reduction in vitro. Aust. J. Agric. Res. 56:803-810 crossref(new window)

SAS. 1996. SAS/STAT$^{{\circledR}}$ Software: Changes and Enhancements through release 6.11. SAS Institute Inc., Cary, NC, USA

Sang, S. L., Jih-Tay Hsu, Hilario C. Mantovani and James B. Russell. 2002. The effect of bovicin HC5, A bacteriocin from Streptococcus bovis HC5, on ruminal methane production in vitro. FEMS Microbiol. Lett. 217:51-55

Sang, S. L., Hilário C. Mantovani and James B. Russell. 2002. The binding and degradation of nisin by mixed ruminal bacteria. FEMS Microbiol. Ecol. 42:339-345

Todorov, S., B. Onno, O. Sorokine, J. M. Chobert, I. Ivanova and X. Dousset. 1999. Detection and characterization of a novel antibacterial substance produced by Lactobacillus plantarum ST 31 isolated from sourdough. Int. J. Food Microbiol. 48:167-177 crossref(new window)

WHO Expert Committee on Food Additives. 1969. Specifications for the identify and purity of food additives and their toxicological evaluation: some antibiotics. World Health Organ. Tech. Rep. Ser. No. 430

Yoshida, N., N. Takahashi and A. Hiraishi. 2005. Phylogenetic characterization of a polychlorinated-dioxin-dechlorinating microbial community by use of microcosm studies. Appl. Environ. Microbiol. 71:4325-4334 crossref(new window)

Yuan, J., Z.-Z. Zang, X.-Z. Chen and W. Yang. 2004. Site-directed mutagenesis of the hinge region of nisinZ and properties of nisinZ mutants. Appl. Microbiol. Biotechnol. 64:806-815 crossref(new window)