JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Associations of Polymorphisms in Four Immune-related Genes with Antibody Kinetics and Body Weight in Chickens
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Associations of Polymorphisms in Four Immune-related Genes with Antibody Kinetics and Body Weight in Chickens
Ahmed, A.S.;
  PDF(new window)
 Abstract
Four biological candidate genes, natural resistance associated macrophage protein 1 (SLC11A1 or NRAMP), prosaposin (PSAP), interferon Gamma (IFNG), and toll-like receptor 4 (TLR4), were examined to identify single nucleotide polymorphisms (SNP) and associations of the SNP with antibody response kinetics in hens. An population was produced by mating highly inbred (<99%) males of two MHC-congenic Fayoumi lines with highly inbred Leghorn hens. The hens (n
 Keywords
Antibody Kinetics;Sheep Red Blood Cells;Brucella abortus;Interferon Gamma;Body Weight;
 Language
English
 Cited by
1.
The effects of polymorphisms in 7 candidate genes on resistance to Salmonella Enteritidis in native chickens, Poultry Science, 2013, 92, 4, 900  crossref(new windwow)
 References
1.
Blackwell, J. M., T. Goswami, C. A. W. Sibthorpe, N. Papo, J. K. White, S. Searle, E. N. Miller, C. S. Peacock, H. Mohammed and M. Ibrahim. 2001. SLC11A1 (formerly NRAMP1) and disease resistance. Cell. Microbiol. 3:773-784. crossref(new window)

2.
Cellier, M., A. Belouchi and P. Gros. 1996. Resistance to intracellular infections: comparative genomic analysis of NRAMP. Trends Genet. 12:201-204. crossref(new window)

3.
Cheeseman, J. H., M. G. Kaiser, C. Ciraci, P. Kaiser and S. J. Lamont. 2006. Breed effect on early cytokine mRNA expression in spleen and cecum of chickens with and without Salmonella enteritidis infection. Dev. Comp. Immunol. 31: 52-60.

4.
Dil, N. and M. A. Qureshi. 2002. Differential expression of inducible nitric oxide synthase is associated with differential Toll-like receptor-4 expression in chicken macrophages from different genetic backgrounds. Vet. Immunol. Immunopathol. 84:191-207. crossref(new window)

5.
Hazkani-Covo, E., N. Altman, M. Horowitz, and D. Graur. 2002. The evolutionary history of Prosaposin: Two successive tandem-duplication events gave rise to the four saposin domains in vertebrates. J. Mol. Evol. 54:30-34. crossref(new window)

6.
Janeway, C. A. and P. Travers. 1997. Immunobiology, The Immune System in Health and Disease, 3rd ed. Current Biology Ltd., London, UK.

7.
Kogut, M. H., L. Rothwell and P. Kaiser. 2005. IFN-gamma priming of chicken heterophils upregulates the expression of proinflammatory and Th1 cytokine mRNA following receptor-mediated phagocytosis of Salmonella enterica serova enteritidis. J. Interferon Cytokine Res. 25:73-81. crossref(new window)

8.
Kramer, J., M. Malek and S. J. Lamont. 2003. Association of twelve candidate gene polymorphisms and response to challenge with Salmonella enteritidis in poultry. Anim. Genet. 34:339-348. crossref(new window)

9.
Lamont, S. J., M. G. Kaiser and W. Liu. 2002. Candidate genes for resistance to Salmonella enteritidis. Vet. Immunol. Immunopathol. 87:423-428. crossref(new window)

10.
Leveque, G., V. Forgetta, S. Morroll, A. L. Smith, N. Bumstead, P. Barrow, J. C. Loredo-Osti, K. Morgan and D. Malo. 2003. Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica Serovar Typhimurium infection in chicken. Infect. Immun.71:1116-1124. crossref(new window)

11.
Liu, W., M. G. Kaiser and S. J. Lamont. 2003. Natural resistance-associated macrophage protein1 gene polymorphisms and response to vaccine against or challenge with Salmonella enteritidis in young chickens. Poult. Sci. 82:259-266. crossref(new window)

12.
Liu, W. and S. J. Lamont. 2003. Candidate gene approach: potentional association of Capase-1, Inhibitor of Apoptosis Protein-1, and Prosaposin gene polymorphism with response to Salmonella enteritidis challenge or vaccination in young chicks. Anim. Biotechnol. 14:61-76. crossref(new window)

13.
Lochmiller, R. L. and C. Deerenberg. 2000. Trade-offs in evolutionary immunology: Just what is the cost of immunity? OIKOS. 88:87-98. crossref(new window)

14.
Malek, M., J. R. Hasenstein and S. J. Lamont. 2004. Analysis of chicken TLR4, CD28, MIF, MD-2, and LITAF genes in a Salmonella enteritidis resource population. Poult. Sci. 83:544-549. crossref(new window)

15.
Martin, A., E. A. Dunnington, W. B. Gross, W. E. Briles, R. W. Briles and P. B. Siegel. 1990. Production traits and alloantingen systems in lines of chickens selected for high or low antibody response to sheep erythrocytes. Poult. Sci. 69:871-878. crossref(new window)

16.
Mashaly, M. M., M. J. W. Heetkamp, H. K. Parmentier and J. W. Schrama. 2000. Influence of genetic selection for antibody production aginst sheep red cells on energy metabolism in laying hens. Poult. Sci. 79:519-524. crossref(new window)

17.
Rothschild, M. F. and M. Soller. 1997. Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8:13-20.

18.
Siegel, P. B. and W. B. Gross. 1980. Production and persistence of antibody in chicken to sheep erythrocytes. 1. Directional selection. Poult. Sci. 59:1-5. crossref(new window)

19.
Soller, M. and L. Andersson. 1998. Genomic approaches to the improvement of disease resistance in farm animals. Rev. Sci. Tech. 17:329-345.

20.
Wiegend, S., N. Mielenz and S. J. Lamont. 1997. Application of nonlinear regression function to evaluate the kinetics of antibody response to vaccine in chicken lines divergently selected for multitrait immune response. Poult. Sci. 76:1248-1255. crossref(new window)

21.
Werling, D. and T. W. Jungi. 2003. Toll-like receptors linking innate and adaptive immune response. Vet. Immunol. Immunopathol. 91:1-12. crossref(new window)

22.
Wong, G., B. Liu, J. Wang, Y. Zhang, X. Yang, Z. Zhang, Q. Meng, J. Zhou, D. Li, J. Zhang, P. Ni, S. Li, L. Ran, H. Li, R. Li, H. Zheng, W. Lin, G. Li, X. Wang, W. Zhoa, J. Li, C. Ye, M. Dai, J. Ruan, Y. Zhou, Y. Li, X. He, X. Huang, W. Tong, J. Chen, J. Ye, C. Chen, N. Wei, L. Dong, F. Lan, Y. Sun, Z. Yang, Y. Yu, Y. Huang, D. He, Y. Xi, D. Wei, Q. Qi, W. Li, J. Shi, M. Wang, F. Xie, X. Zhang, P. Wang, Y. Zhao, N. Li, N. Yang, W. Dong, S. Hu, C. Zeng, W. Zheng, B. Hao, L. W. Hillier, S. P. Yang, W. C. Warren, R. K. Wilson, M. Brandstrom, H. Ellegren, R. P. Crooijmans, J. J. van der Poel, H. Bovenhuis, M. A. Groenen, I. Ovcharenko, L. Gordon, L. Stubbs, S. Lucas, T. Glavina, A. Aerts, P. Kaiser, L. Rothwell, J. R. Young, S. Rogers, B. A. Walker, A. van Hateren, J. Kaufman, N. Bumstead, S. J. Lamont, H. Zhou, P. M. Hocking, D. Morrice, D. J. de Koning, A. Law, N. Bartley, D. W. Burt, H. Hunt, H. H. Cheng, U. Gunnarsson, P. Wahlberg, L. Andersson, K. Institutet, E. Kindlund, M. T. Tammi, B. Andersson, C. Webber, C. P. Ponting, I. M. Overton, P. E. Boardman, H. Tang, S. J. Hubbard, S. A. Wilson, J. Yu and H. Yang. 2004. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717-722. crossref(new window)

23.
Ye, X., S. Avendano, J. C. M. Dekkers and S. J. Lamont. 2006. Association of twelve immune-telated genes with performance of three broiler lines in two different hygiene environments. Poult. Sci. 85:1555-1568. crossref(new window)

24.
Zhou, H., A. J. Buitenhuis, S. Weigend and S. J. Lamont. 2001. Candidate gene promoter polymorphisms and antibody response kinetic in chicken: interferon-gamma, interleukin-2, and immunoglobulin light chain. Poult. Sci. 80:1679-1689. crossref(new window)

25.
Zhou, H. and S. J. Lamont. 2003a. Chicken MHC class I and II gene effects on antibody response kinetic in adult chicken. Immunogenetics 55:133-140. crossref(new window)

26.
Zhou, H. and S. J. Lamont. 2003b. Association of six candidate genes with antibody response kinetic in hens. Poult. Sci. 82:1118-1126. crossref(new window)

27.
Zhou, H., H. S. Lillehoj and S. J. Lamont. 2002. Associations of $interferon-{\gamma}$ genotype and protein level with antibody response kinetics in chickens. Avian Dis. 46:869-876. crossref(new window)