Advanced SearchSearch Tips
Quality Evaluation of Sliced and Pizza Cheeses Treated by Gamma and Electron Beam Irradiation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Quality Evaluation of Sliced and Pizza Cheeses Treated by Gamma and Electron Beam Irradiation
Kim, Hyun-Joo; Ham, Jun-Sang; Kim, Kee-Hyuk; Ha, Ji-Hyoung; Ha, Sang-Do; Jo, Cheo-Run;
  PDF(new window)
This study was conducted to evaluate and compare the quality changes of commercial sliced and pizza cheeses processed by gamma and electron beam irradiation. The -value of sliced and pizza cheeses decreased and the -value decreased only in pizza cheese by both irradiation sources. There was no change in pH. There was no difference in 2-thiobarbituric acid reactive substances (TBARS) value between non-irradiated and irradiated samples at a dose of 3 kGy or less (p<0.05). However, both irradiation sources resulted in increased TBARS value in sliced and pizza cheeses at 5 kGy. Sensory evaluation revealed that irradiation influenced odor, taste and overall acceptability of both cheeses and may cause the limitation of consumers' acceptance for irradiated cheese products. Results indicate that both gamma and electron beam irradiations with less than 3 kGy may not influence significantly the physicochemical quality of sliced and pizza cheeses. However, to meet a market requirement, a method to overcome the sensory deterioration of cheeses should be developed and applied.
Sliced and Pizza Cheeses;Quality;Gamma Irradiation;Electron Beam Irradiation;
 Cited by
Effect of Atmospheric Pressure Plasma Jet on Inactivation of Listeria monocytogenes, Quality, and Genotoxicity of Cooked Egg White and Yolk,Lee, Hyun-Jung;Song, Hyun-Pa;Jung, Hee-Soo;Choe, Won-Ho;Ham, Jun-Sang;Lee, Jun-Heon;Jo, Cheo-Run;

한국축산식품학회지, 2012. vol.32. 5, pp.561-570 crossref(new window)
Effect of E-beam sanitation of surface mould cheese on texture and sensory attributes, LWT - Food Science and Technology, 2016, 70, 1  crossref(new windwow)
Ultrasound-assisted cutting of cheddar, mozzarella and Swiss cheeses – Effects on quality attributes during storage, Innovative Food Science & Emerging Technologies, 2016, 37, 1  crossref(new windwow)
Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin, Current Applied Physics, 2013, 13, 7, 1420  crossref(new windwow)
Effect of Atmospheric Pressure Plasma Jet on Inactivation of Listeria monocytogenes, Quality, and Genotoxicity of Cooked Egg White and Yolk, Korean Journal for Food Science of Animal Resources, 2012, 32, 5, 561  crossref(new windwow)
Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma, Food Control, 2015, 47, 451  crossref(new windwow)
Adeil Pietranera, M. S., P. Narvaiz, C. Horak and E. Kairiyama. 2003. Irradiated ice creams for immunosuppressed patients. Radiat. Phys. Chem. 66:357-365. crossref(new window)

Dipuo Seisa, G., C. Hugo, A. Hugo, C. Bothma and J. van der Merwe. 2004. The effect of low-dose gamma irradiation and temperature on the microbiological and chemical changes during ripening of Cheddar cheese. Radiat. Phys. Chem. 69:419-431. crossref(new window)

Hashisaka, A. E., M. A. Einstein, B. A. Rasco, F. P. Hungate and F. M. Dong. 1990. Sensory analysis of dairy products irradiated with cobalt-60 at $-78^[\circ}C$. J. Food Sci. 55:404-408. crossref(new window)

International Dairy Foods Association (IDFA). 2004. Dairy Facts 2004 eds) Washington, DC.

Jo, C., H. J. Kim, D. H. Kim, W. K. Lee, J. S. Ham and M. W. Byun. 2007. Radio sensitivity of selected pathogens in ice cream. Food Control 18:859-865. crossref(new window)

Kaan Tekinsen, K. and Z. Ozdemir. 2006. Prevalence of foodborne pathogens in Turkish Van otlu (Herb) cheese. Food Control 17:707-711. crossref(new window)

Kanbakna, U., A. N. Con and A. Ayar. 2004. Determination of microbiological contamination sources during ice cream production in Denizil, Turkey. Food Control 15:463-470. crossref(new window)

Kim, H. J., A. Jang, J. S. Ham, S. G. Jeong, J. N. Ahn, M. W. Byun and C. Jo. 2007a. Development of ice cream with improved microbiological safety and acceptable organoleptic quality using irradiation. J. Anim. Sci. Technol. (Kor.) 49(4):515-522. crossref(new window)

Kim, H. J., B. S. Song, J. H. Kim, J. Choi, J. W. Lee, C. Jo and M. W. Byun. 2007b. Application of gamma irradiation for the microbiological safety of sliced cheddar cheese. J. Radiat. Ind. 1:15-19.

Kim, H. J., I. J. Han, J. Choi, B. S. Song, J. H. Kim, J. S. Ham, W. K. Lee, H. S. Yook, M. H. Shin, M. W. Byun and J. W. Lee. 2008a. Physicochemical and sensory characteristics of vanilla ice cream treated by gamma irradiation. Korean J. Food Sci. Anim. Resour. 28(1):69-75. crossref(new window)

Kim, H. J., H. P. Song, J. S. Ham, J. W. Lee, K. Kim and C. Jo. 2008b. Effect of gamma irradiation on the overall quality of a commercial plain-type yogurt products. Korean J. Food Sci. Anim. Resour. 28(5):574-579. crossref(new window)

Kim, H. J., J. S. Ham, J. W. Lee, K. Kim, S. D. Ha and C. Jo. 2010. Effects of gamma and electron beam irradiation on the survival of pathogens inoculated into sliced and pizza cheeses. Radiat. Phys. Chem. 79:731-734. crossref(new window)

Kochhar, S. P. 1996. Oxidation pathways to the formation of offflavours. In: Food Taints and Off-flavours, second ed. (Ed. M. J. Saxby) pp. 168-225. Balckie Acedemic & Professional. London.

Konteles, S., V. J. Sinanoglou, A. Batrinou and K. Sflomos. 2009. Effect of γ-irradiation on Listeria monocytogenes population, colour, texture and sensory properties of Feta cheese duting cold storage. Food Microbiol. 26:157-165. crossref(new window)

Lee, J. W., J. H. Kim, J. H. Kim, S. H. Oh, J. H. Seo, C. J. Kim, S. H. Cheong and M. W. Byun. 2005. Application of gamma irradiation for the microbiological safety of fried-frozen cheese ball. J. Korean Soc. Food Sci. Nutr. 34(5):729-733. crossref(new window)

Miller, R. B. 2005. Food irradiation using electron beams. In: Electronic irradiation of foods (ED. R. B. Miller). pp. 43-74. New York: Springer.

Nawar, W. W. 1985. Lipids. In: Food Chemistry, Second ed., revised and expanded (Ed. O. R. Fennema). pp. 139-244. Marcel Dekker, New York.

Oh, S. H., Y. S. Lee, J. W. Lee, M. R. Kim, H. S. Yook and M. W. Byun. 2005. The effect of ${\gamma}-irradiation$ on the non-enzymatic browning reaction in the aqueous model solutions. Food Chem. 92:337-363. crossref(new window)

Rudolf, M. and S. Scherer. 2001. High incidence of Listeria monocytogenes in European red smear cheese. Int. J. Food Microbiol. 63:91-98. crossref(new window)

Song, H. P., B. Kim, S. Jung, J. H. Choe, H. Yun, Y. J. Kim and C. Jo. 2009. Effect of gamma and electron beam irradiation on the survival of pathogens inoculated into salted, seasoned, and fermented oyster. LWT-Food Sci. Technol. 42:1320-1324. crossref(new window)

SPSS. 1997. Statistical Packaging for the Social Sciences, Norman.

Thayer, D. W., G. Boyd, A. Kim, J. B. Fox Jr and H. M. Farrell Jr. 1998. Fate of gamma-irradiated Listeria monocytogenes during refrigerated storage on raw or cooked turkey breast meat. J. Food Prot. 61:979-987.

Urbain, M. W. 1986. Biological effects of ionizing irradiation. In: Food Irradiation. Food Science and Technology Series, (ED. W. M. Urbain). Academic Press, London, UK, pp. 83-87.

Waje, C. K., S. Y. Jun, Y. K. Lee, B. N. Kim, D. H. Han, C. Jo and J. H. Kwon. 2009. Microbial quality assessment and pathogen inactivation by electron beam and gamma irradiation of commercial seed sprouts. Food Control 20:200-204. crossref(new window)

WHO. 1988. Food irradiation: A technique for preserving and improving the safety of food. Geneva, World Health Organization.

WHO. High dose irradiation. 1999. In wholesomeness of food irradiated with doses above 10 kGy. WHO Technical Report Series 890. Geneva, pp, 9-37.

Zamora, R. and F. J. Hidalgo. 2005. Coordinate contribution of lipid oxidation and Mailard reaction to the non-enzymatic food browning. Crit. Rev. Food Sci. Technol. 45:49-59. crossref(new window)