Advanced SearchSearch Tips
Characteristics of Seven Japanese Native Chicken Breeds Based on Egg White Protein Polymorphisms
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characteristics of Seven Japanese Native Chicken Breeds Based on Egg White Protein Polymorphisms
Myint, Si Lhyam; Shimogiri, Takeshi; Kawabe, Kotaro; Hashiguchi, Tsutomu; Maeda, Yoshizane; Okamoto, Shin;
  PDF(new window)
In this study, to examine genetic variability within a breed and genetic relationships between populations/breeds, we genotyped 606 birds from seven Japanese native chicken breeds at seven polymorphic loci of egg white proteins and compared those with Asian native chicken populations and commercial breeds. Genotyping of the Japanese native breeds showed that ovalbumin, two ovoglobulins and ovotransferrin were polymorphic, but ovomacroglobulin, ovoflavoprotein and lysozyme were monomorphic. The proportion of polymorphic loci () and average heterozygosity () within a population ranged from 0.286 to 0.429 and from 0.085 to 0.158, respectively. The coefficient of gene differentiation () was 0.250 in the Japanese native chicken breeds. This estimate was higher than that of Asian native chicken populations ( = 0.083) and of commercial breeds ( = 0.169). Dendrogram and PCA plot showed that Satsuma-dori, Jitokko, Amakusa-daio and Hinai-dori were closely related to each other and grouped into Asian native chickens and that Tsushima-jidori, Nagoya and Chan (Utaichan) were ramified far from other Japanese native chicken breeds. The egg white protein polymorphisms demonstrated that the population differentiation of the seven Japanese native chicken breeds was relatively large.
Egg White;Protein Polymorphism;Heterozygosity;Japanese Native Chicken;
 Cited by
Analysis of Egg White Lysozyme Polymorphisms among Japanese Quail Populations in Japan and France, The Journal of Poultry Science, 2012, 49, 2, 74  crossref(new windwow)
Co-purification of chicken egg white proteins using polyethylene glycol precipitation and anion-exchange chromatography, Separation and Purification Technology, 2012, 96, 75  crossref(new windwow)
Biochemical and Functional Characterization of Transiently Expressed in Neural Precursor (TENP) Protein in Emu Egg White, Journal of Agricultural and Food Chemistry, 2014, 62, 22, 5156  crossref(new windwow)
Baker, C. M. A. 1968a. The protein of egg white. In egg quality, A study of the hen's egg (Ed. T. C. Carter). 67-108.

Baker, C. M. A. 1968b. Molecular genetics of avian proteins. IX. Interspecific and intraspecific variation of egg white proteins of the genus Gallus. Genetics 58:211-226.

Baker, C. M. A., G. Croizier, A. Stratil and C. Manwell. 1970. Identity and nomenclature of some protein polymorphisms of chicken eggs and sera. Adv. Genet. 15:147-174. crossref(new window)

Baker, C. M. A., C. Manwell, N. Javaprakash and N. Francis. 1971. Molecular genetics of avian proteins. X. Egg white protein polymorphism of indigenous Indian chickens. Comp. Biochem. Physiol. 40:147-153. crossref(new window)

Boschetti, E. and J. L. Coffman. 1998. Enhanced diffusion chromatography and related sorbents for biopurification. In Bioseparation and Bioprocessing (Ed. G. Subramanian). Wiley-VCH, Weinheim. 1:157-198.

Buvanendran, V. 1967. Egg white polymorphisms and economic characters in the domestic fowl. Br. Poult. Sci. 8:119-126. crossref(new window)

D'Ambrosio, C., Simona Arena, Andrea Scaloni, Luc Guerrier, Egisto Boschetti, Martha Elena Mendieta, Attilio Citterio, and Pier Giorgio Righetti. 2008. Exploring the chicken egg white proteome with combinatorial peptide ligand linraries. J. Proteome Res. 8:3461-3474.

Davis, B. J. 1964. Disc electrophoresis-II method and application to human serum proteins. Annu. NY Acad. Sci. 121:404-427.

Giansanti, F., M. F. Giardi, M. T. Massucci, D. Botti and G. Antonini. 2007. Ovotransferrin expression and release by chicken cell lines infected with Marek's disease virus. Biochem. Cell Biol. 85:150-155. crossref(new window)

Harpreet, S. and A. W. Nordskog. 1981. Biochemical polymorphic systems in inbred lines of chickens. Biochem. Genet. 19:1031-1035. crossref(new window)

Hasselberger, F. X. 1978. Use of enzymes and immobilized enzymes, Chicago, Ill: Nelson-Hall Inc. Publishers. 128-305.

Inafuku, K., Y. Maeda, K. Ishihara, S. Okamoto and T. Hashiguchi. 1997. A new mutant of ovalbumin in the chicken. Jpn. Poult. Sci. 34:87-93. crossref(new window)

Inafuku, K., Y. Maeda, S. Okamoto, S. M. Ardiningsasi and T. Hashiguchi. 1998. Polymorphisms of egg white proteins in native chickens in Indonesia. Jpn. Poult. Sci. 35:278-284. crossref(new window)

Ino, Y., T. Oka, K. Nomura, T. Watanabe, S. Kawashima, T. Amano, Y. Hayashi, A. Okabe, Y. Uehara, T. Masuda, J. Takamatsu, A. Nakazawa, K. Ikeuchi, H. Endo, K. Fukuda and F. Akishinonomiya. 2008. Breed differentiation among Japanese native chickens by specific skull features determined by directs measurements and computer vision techniques. Br. Poult. Sci. 49:273-281. crossref(new window)

Jasir, A., F. Kasprzykowski, V. Lindstrom, C. Schalen and A. Grubb. 2004. New antimicrobial peptide active against gram-positive pathogens. Indian J. Med. Res. 119:74-76.

Kato, A., T. Kanemitsu and K. Kobayashi. 1991. Inhibitory Activity of ovomacroglobulin for pepsin and rennin. J. Agric. Food Chem. 39:41-43. crossref(new window)

Kimura, M. 1972. Electrophoresis of egg white proteins of the Japanese and the Formosan native fowl. Jpn. Poult. Sci. 9:237-238. crossref(new window)

Kinoshita, K., S. Okamoto, T. Shimogiri, K. Kawabe, T. Nishida, R. Kakizawa, Y. Yamamoto and Y. Maeda. 2002. Gene constitution of egg white proteins of native chickens in Asian countries. Asian-Aust. J. Anim. Sci. 15:157-165. crossref(new window)

Komiyama, T., K. Ikeo and T. Gojobori. 2003. Where is the origin of the Japanese gamecocks? Gene 317:195-202. crossref(new window)

Lush, I. E. 1961. Genetics polymorphisms in the egg albumen proteins of the domestic fowls. Nature 189:981-984. crossref(new window)

Lush, I. E. 1964. Egg albumen polymorphisms in the fowl, the ovalbumin locus. Genet. Res. 5:257-268. crossref(new window)

Marchal, R., D. Chaboche, R. Douillard and P. Jeandet. 2002. Influence of lysozyme treatments on champagne base wine foaming properties. J. Agric. Food Chem. 50:1420-1428. crossref(new window)

Maullu, C., G. Lampis, T. Basile, A. Ingianni, G. M. Rossolini and R. Pompei. 1999. Production of lysozyme-enriched biomass from cheese industry by-products. J. Appl. Microbiol. 86:182-186. crossref(new window)

Meszaros, L., K. Horti and J. Farkas. 2006. Changes of hen eggs and their components caused by non-thermal pasteurizing treatments. I. Gamma irradiation of shell eggs. Acta Aliment. 35:229-236. crossref(new window)

Nakamura, A., K. Kino, M. Minezawa, K. Noda and H. Takahashi. 2006. A method for discriminating a Japanese chicken, the Nagoya breed, using microsatellite markers. J. Poult. Sci. 85:2124-2129. crossref(new window)

Nei, M. 1972. Genetic distance between populations. Am. Nat. 106:283-292. crossref(new window)

Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA. 70:3321-3323. crossref(new window)

Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583-590.

Nichol, L. W., E. A. Owen and D. J. Winzor. 1985. A macromolecular shape function based on sedimentation velocity parameters. Arch. Biochem. Biophys. 236:338-341. crossref(new window)

Nierkens, S., P. van Helden, M. Bol, R. Bleumink, P. van Kooten, S. Ramdien-Murli, L. Boon and R. Pieters. 2002. Selective requirement for CD40-CD154 in drug-induced type 1 versus type 2 responses to trinitrophenyl-ovalbumin. J. Immunol. 168:3747-3754. crossref(new window)

Ogden, A. L., J. R. Morton, D. G. Gilmour and E. M. McDermid. 1962. Inherited variants in the transferrins and conalbumins of the chickens. Nature 195:1026-1028.

Oka, T., Y. Ino, K. Nomura, S. Kawashima, T. Kuwayama, H. Hanada, T. Amano, M. Takada, N. Takahata, Y. Hayashi and F. Akishinonomiya. 2007. Analysis of mt DNA sequences shows Japanese native chickens have multipal origins. Anim. Genet. 38:287-293. crossref(new window)

Okabayashi, H., S. Kamiya and Y. Tanabe. 1998. Phylogenetic relationships among Japanese native chicken breeds based on blood protein polymorphisms. Jpn. Poult. Sci. 35:173-181. crossref(new window)

Osman, S. A. M., M. Sekino, T. Kuwayama, K. Kinoshita, M. Nishibori, Y. Yamamoto and M. Tsudzuki. 2006. Genetic variability and relationships of native Japanese chickens based on microsatellite DNA polymorphisms -focusing on the natural monuments of Japan. J. Poult. Sci. 43:12-22. crossref(new window)

Osserman, E. F., M. Klockars, J. Halper and R. E. Fischer. 1974. In: Lysozyme (Ed. E. F. Osserman, R. E. Canfield and S. Beychok). Academic Press, New York.

Peck, M. W. and P. S. Fernandez. 1995. Effect of lysozyme concentration, heating at $90^{\circ}C$ and then incubation at chilled temperatures on growth from spores of non-proteolytic Clostridium botulinum. Lett. Appl. Microbiol. 21:50-54. crossref(new window)

Reisfeld, R. A., U. J. Lewis and D. E. Williams. 1962. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature 195:281-283. crossref(new window)

Rikimaru, K. and H. Takahashi. 2007. A method for discriminating a Japanese brand of chicken, the Hinai-dori, using microsatellite markers. J. Poult. Sci. 86:1881-1886. crossref(new window)

SAS. 1999. $SAS/STAT^{\circledR}$ User's Guide, Version 9.2, SAS Institute Inc., Cary, NC, USA.

Seviour, E. M. and R. G. Board. 1972. Bacterial growth in albumen taken from the eggs of domestic hens and waterfowl. Br. Poult. Sci. 13:557-575. crossref(new window)

Sneath, P. H. A. and R. R. Sokal. 1973. Numerical Taxonomy. Freeman, San Francisco.

Stratil, A. 1968. Transferrin and albumen loci in chickens, Gallus gallus L. Comp. Biochem. Physiol. 24:113-121. crossref(new window)

Tadano, R., M. Sekino, M. Nishibori and M. Tsudzuki. 2007. Microsatellite marker analysis for the genetics relationships among Japanese long-tailed chicken breeds. J. Poult. Sci. 86:460-469. crossref(new window)

Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. crossref(new window)

Tanabe, Y., H. Kano, K. Kinoshita, O. Taniwaki and H. Okabayashi. 2000. Gene constitution of a newly found populations of Japanese native chickens in southern region of Ehime prefecture, Shikoku, Japan. Jpn. Poult. Sci. 37:101-107. crossref(new window)

Thakur, A., A. Chauhan and M. D. Willcox. 1999. Effect of lysozyme on adhesion and toxin release by Staphylococcus aureus. J. Ophthalmol. 27:224-227.

Valenti, P. and G. Antonini. 2005. Lactoferrin: an important host defence against microbial and viral attack. Cell Mol. Life Sci. 62:2576-2587. crossref(new window)

White, H. B. III and A. H. Merrill Jr. 1988. Riboflavin binding proteins. Annu. Rev. Nutr. 8:279-299. crossref(new window)

Winter, W. P., E. G. Buss, C. O. Clagett and R. V. Boucher. 1967. The nature of the biochemical lesion in avian renal rivoflavinuria-I. Effect of genotype on renal riboflavin metabolism. Comp. Biochem. Physiol. 22:889-896. crossref(new window)