Advanced SearchSearch Tips
Linkage Disequilibrium and Effective Population Size in Hanwoo Korean Cattle
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Linkage Disequilibrium and Effective Population Size in Hanwoo Korean Cattle
Lee, S.H.; Cho, Y.M.; Lim, D.; Kim, H.C.; Choi, B.H.; Park, H.S.; Kim, O.H.; Kim, S.; Kim, T.H.; Yoon, D.; Hong, S.K.;
  PDF(new window)
This study presents a linkage disequilibrium (LD) analysis and effective population size () for the entire Hanwoo Korean cattle genome, which is the first LD map and effective population size estimate ever calculated for this breed. A panel of 4,525 markers was used in the final LD analysis. The pairwise statistic of SNPs up to 50 Mb apart across the genome was estimated. A mean value of = 0.23 was observed in pairwise distances of <25 kb and dropped to 0.1 at 40 to 60 kb, which is similar to the average intermarker distance used in this study. The proportion of SNPs in useful LD () was 20% for the distance of 10 and 20 kb between SNPs. Analyses of past effective population size estimates based on direct estimates of recombination rates from SNP data demonstrated that a decline in effective population size to = 98.1 occurred up to three generations ago.
Linkage Disequilibrium (LD);Effective Population Size ();Hanwoo;
 Cited by
Demographic Trends in Korean Native Cattle Explained Using Bovine SNP50 Beadchip,;;;;;

Genomics & Informatics, 2016. vol.14. 4, pp.230-233 crossref(new window)
유전체정보활용 한우개량효율 증진,이승환;조용민;이준헌;오성종;

농업과학연구, 2015. vol.42. 4, pp.397-406 crossref(new window)
Genome-wide linkage disequilibrium analysis of indigenous cattle breeds of Ethiopia and Korea using different SNP genotyping BeadChips,;;;;;

Genes and Genomics, 2015. vol.37. 9, pp.759-765 crossref(new window)
Coalescent-Based Method for Learning Parameters of Admixture Events from Large-Scale Genetic Variation Data, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 5, 1137  crossref(new windwow)
Genome-Wide Association Study Identifies Major Loci for Carcass Weight on BTA14 in Hanwoo (Korean Cattle), PLoS ONE, 2013, 8, 10, e74677  crossref(new windwow)
Towards breed formation by island model divergence in Korean cattle, BMC Evolutionary Biology, 2015, 15, 1  crossref(new windwow)
Genome-wide linkage disequilibrium analysis of indigenous cattle breeds of Ethiopia and Korea using different SNP genotyping BeadChips, Genes & Genomics, 2015, 37, 9, 759  crossref(new windwow)
Linkage disequilibrium in the estimation of genetic and demographic parameters of extensively raised chicken populations, World's Poultry Science Journal, 2015, 71, 03, 505  crossref(new windwow)
Demographic Trends in Korean Native Cattle Explained Using Bovine SNP50 Beadchip, Genomics & Informatics, 2016, 14, 4, 230  crossref(new windwow)
Prioritization for conservation of Iranian native cattle breeds based on genome-wide SNP data, Conservation Genetics, 2016, 17, 1, 77  crossref(new windwow)
Genetic Divergence of Cattle Populations Based on Genomic Information, Scientia Agriculturae Bohemica, 2016, 47, 3  crossref(new windwow)
Genome-wide linkage disequilibrium and past effective population size in three Korean cattle breeds, Animal Genetics, 2016, 48, 1, 85  crossref(new windwow)
Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture, Genetics Selection Evolution, 2017, 49, 1  crossref(new windwow)
Abecasis, G. R., S. S. Cherny, W. O. Cookson and L. R. Cardon. 2002. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30:97-101. crossref(new window)

Arias, J. A., M. Keehan, P. Fisher, W. Coppieters and R. Spelman. 2009. A high density linkage map of the bovine genome. BMC Genet. 10:1471-2156.

Bohmanova, J., M. Sargolzaei and F. S. Schenkel. 2010. Characteristics of linkage disequilibrium in North American Holsteins. BMC Genomics 11: doi:10.1186/1471-2164-11-421 crossref(new window)

Decker, J. E., J. C. Pires, G. C. Conant, S. D. Mckay, M. P. Heaton, K. Chen, A. Cooper, J. Vilkki, C. M. Seabury, A. R. Caetano, G. S. Johnson, R. A. Brennenman, O. Hanotte, L. S. Eggert, P. Wiener, J. J. Kim, K. S. Kim, T. S. Sonstegard, C. P. van Tassell, H. L. Neibergs, J. C. McEwan, R. Brauning, L. L. Coutinho, M. E. Babar G. A. Wilson, M. C. McClue, M. M. Rolf, J. W. Kim, R. D. Schnabel and J. E. Taylor. 2009. Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics. PNAS 106:18644-18649 crossref(new window)

Du, F. X., A. C. Clutter and M. M. Lohuis. 2007. Characterizing linkage disequilibrium in pig population. Int. J. Biol. Sci. 3:166-178.

Han, S. W. 1996. The breed of cattles. Sun-Jin publishing pp. 148-160.

Hayes, B. J. 2008. QTL mapping, MAS and Genomic selection. Text book for Armidale summer animal breeding course pp. 6-10.

Hedrick, P. 1987. Gametic disequilibrium measures: proceed with caution. Genetics 117:331-341.

Khatkar, M. S., K. R. Zenger, M. Hobbs, R. J. Hawken, J. A. L. Cavanagh, W. Barris, A. E. McClintock, S. McClintock, P. C. Thomson, B. Tier, F. W. Nicholas and H. W. Raadsma. 2007. A primary assembly of a bovine haplotype block map based on a 15 k SNP panel genotyped in Holstein-Friesian cattle. Genetics 176:763-772.

Kim, E. S. and B. W. Kirkpatrick. 2009. Linkage disequilibrium in the North American Holstein population. Anim. Genet. 40:279-288. crossref(new window)

Lee, C. and E. J. Pollak. 2002. Genetic antagonism between body weight and milk production in beef cattle. J. Anim. Sci 80:316-321.

Lee, S. H. 2010. Genome analysis to identify QTL and genes affecting carcass traits in Hanwoo (Korean cattle). The University of New England, PhD thesis, pp. 10-20.

Lewontin, R. C. 1964. The interaction of selection and linkage. I. General considerations; heterotic model. Genetics 49:49-67.

Lindblad-Toh, K et al. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803-819. crossref(new window)

Hill, W. G, and A. Roberson. 1968. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38:226-231. crossref(new window)

McKay, S. D., R. D. Schnabel, B. M. Murdoch, L. K. Matukumalli, J. Aerts, W. Coppieters, D. Crews E. D. Neto, C. A. Gill, Chuan Gao, H. Mannen, P. Stothard, Z. Wang C. P. van Tassell, J. L. Williams J. F. Taylor, and S. S. Moore. 2007. Whole genome linkage disequilibrium maps in cattle. BMC Genet. 8:74. doi: 10.1186/1471-2156-8-74. crossref(new window)

Meuwissen, T. H. E., B. J. Hayes and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819-1829.

R Development Core Team: R: a language and environment for statistical computing. 2008 R Foundation for statistical computing, Vienna, Austria.

Sved, J. V. 1971 Linkage disequilibrium and homozygosity of chromosome segments in finite population. Theor. Popul. Biol. 2:125-141. crossref(new window)

Tenesa, A., P. Navarro, B. J. Hayes, D. L. Duffy, G. M. Clarke, M. E. Goddard and P. M. Visscher. 2007. Recent human effective population size estimated from linkage disequilibrium. Genome Res. 17:520-526. crossref(new window)

The international HapMap Consortium 2005. A haplotype map of the human genome. Nature 437:1299-1320. crossref(new window)

Yoon, D. H., E. W. Park, S. H. Lee, H. K. Lee, S. J. Oh, I. C. Cheong and K. C. Hong. 2005. Assessment of genetic diversity and relationships between Korean cattle and other cattle breeds by microsatellite loci. J. Anim. Sci. Technol. (Kor) 47(3):341-354. crossref(new window)