Advanced SearchSearch Tips
Melatonin Attenuates Nitric Oxide Induced Oxidative Stress on Viability and Gene Expression in Bovine Oviduct Epithelial Cells, and Subsequently Increases Development of Bovine IVM/IVF Embryos
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Melatonin Attenuates Nitric Oxide Induced Oxidative Stress on Viability and Gene Expression in Bovine Oviduct Epithelial Cells, and Subsequently Increases Development of Bovine IVM/IVF Embryos
Kim, J.T.; Jang, H.Y.; Park, C.K.; Cheong, H.T.; Park, I.C.; Yang, B.K.;
  PDF(new window)
The objective of the present study was to elucidate the fundamental mechanism of bovine oviduct epithelial cell (BOEC) co-culture on developmental capacity of bovine IVM/IVF embryos and to determine whether or not melatonin acts as an antioxidant in BOEC culture and subsequent embryo development. These studies examined the effects of melatonin against NO-induced oxidative stress on cell viability, lipid peroxidation (LPO) and the expression of antioxidant genes (CuZnSOD, MnSOD and Catalase) or apoptosis genes (Bcl-2, Caspase-3 and Bax) during BOECs culture. We also evaluated the developmental rates of bovine IVM/IVF embryos with BOEC co-culture, which were pre-treated with melatonin () in the presence or absence of sodium nitroprusside (SNP, ) for 24 h. Cell viability in BOECs treated with SNP (50-) decreased while melatonin addition (1-) increased viability in a dose-dependent manner. Cell viability in melatonin plus SNP () gradually recovered according to increasing melatonin addition (1-). The LPO products were measured by thiobarbituric acid (TBA) reaction for malondialdehyde (MDA). Addition of melatonin in BOEC culture indicated a dose-dependent decrease of MDA, and in the SNP group among BOECs treated with SNP or melatonin plus SNP groups MDA was significantly increased compared with SNP plus melatonin groups (p<0.05). In expression of apoptosis or antioxidant genes detected by RT-PCR, Bcl-2 and antioxidant genes were detected in melatonin or melatonin plus SNP groups, while Caspase-3 and Bax genes were only found in the SNP group. When bovine IVM/IVF embryos were cultured for 6-7 days under the BOEC co-culture system pre-treated with melatonin in the presence or absence of SNP, the highest developmental ability to blastocysts was obtained in the melatonin group. These results suggest that melatonin has an anti-oxidative effect against NO-induced oxidative stress on cell viability of BOECs and on the developmental competence of bovine IVM/IVF embryo co-culture with BOEC.
Melatonin;Bovine Oviduct Epithelial Cell;Bovine IVM/IVF Embryos;Nitric Oxide;Antioxidant;
 Cited by
Allegra, M., R. J. Reiter, D. X. Tan, C. Gentile, L. Tesoriere and M. A. Livrea. 2003. The chemistry of melatonin's interaction with reactive species. J. Pineal Res. 34:1-10. crossref(new window)

Ashok, B. T., L. David, Y. G. Chen, V. P. Garikapaty, B. Chander, D. Kanduc, A. Mittrlman and R. K. Tiwari. 2003. Peptide mitmotopes of on oncoproteins as therapeutic agents in breast cancer. Int. J. Mol. Med. 11:465-471.

Bavister, B. D. 1995. Culture of preimplantation embryos: facts and artifacts. Hum. Reprod. Update, 1 91-148. crossref(new window)

Chomczynski, P. and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156-159.

Exley, G. E., C. Tang, A. S. McElhinny and C. M. Warner. 1999. Expression of caspase and Bcl-2 apoptotic family members in mice preimplantation embryos. Biol. Reprod. 61:231-239. crossref(new window)

Flood, L. P. and B. Shirley. 1991. Reduction of embryotoxicity by protein in embryo culture media. Reprod. Dev. 30:226-231. crossref(new window)

Galli, C., R. Duchi, G. Crotti, P. Turini, N. Ponderato, S. Colleoni, I. Lagutina and G. Lazzari. 2003. Bovine embryo technologies. Theriogenology 59:599-616. crossref(new window)

Gardner, P. R., D. D. Nguyen and C. W. White. 1994. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc. Natl. Acad. Sci. USA. 91:12248-12252. crossref(new window)

Griveau, J. F., E. Dumont, B. Renard, J. P. Callegari and D. L. Lannou. 1995. Reactive oxygen species, lipid peroxidation and enzymatic defense systems in human spermatozoa. J. Reprod. Fertil. 103:17-26. crossref(new window)

Guerin, P., S. El Mouatassim and Y. Menezo. 2001. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update., 7:175-189. crossref(new window)

Hailliwell, B. 2000. The antioxidant paradox. Lancet 355:1179-1180. crossref(new window)

Hancock, J. T., R. Desikan and S. J. Neill. 2001. Role of reactive oxygen species in cell signaling pathways. Biochem. Soc. Trans. 29:345-350. crossref(new window)

Hardy, K. 1999. Apoptosis in human embryo. Rev. Reprod. 4:125-134. crossref(new window)

Haunstter, A. and S. Izumo. 1998. Apoptosis; basic mechanisms and implications for cardiovascular diease. Cir. Res. 82:1111-1129. crossref(new window)

Ishizuka, B., Y. Kuribayashi, K. Murai, A. Amemiya and M. T. Itoh. 2000. The effect of melatonin on in vitro fertilization and embryo development in mice. J. Pineal Res. 28:48-51. crossref(new window)

Jeon, K., E. Y. Kim, J. C. Tae, C. H. Lee, K. S. Lee, Y. O. Kim, D. K. Jeong, S. K. Cho, J. H. Kim, H. Y. Lee, K. Z. Riu, S. G. Cho and S. P. Park. 2008. Survivin protein expression in bovine follicular oocytes and their in vitro developmental competence. Anim. Reprod. Sci. 108:319-333. crossref(new window)

Juknat, A. A., M. V.Mendez, A. Quaglino, C. I. Fameli, M. Mena and M. L. Kotler. 2005. Melatonin prevents hydrogen peroxide-induced Bax expression in cultured rat astrocytes. J. Pineal Res. 38:84-92. crossref(new window)

Kim, H. J. and J. S. Kwon. 1999. Effects of placing microimplants of melatonin in striatum on oxidative stress and neuronal damage mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Arch. Pharm. Res. 22:35-43. crossref(new window)

de Lamirande, E. and C. O'Flaherty. 2008. Sperm activation: Role of reactive oxygen species and kinases. Biochim. Biophys. Acta. 1784:106-115. crossref(new window)

Lawlor, S. M. and N. M. O'Brien. 1995. Modulation of oxidative stress by beta-carotene in chicken embryo fibroblasts. Br. J. Nutr. 73:841-850. crossref(new window)

Liu, L. P. S., S. T. H. Chan, P. C. Ho and W. S. B. Yeung. 1998. Partial purification of embryotrophic factors from human oviductal cells. Hum. Reprod. 13:1613-1619. crossref(new window)

Papis, K., O. Poleszczuk, E. Wenta-Muchalska and J. A. Modlinski. 2007. Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. J. Pineal Res. 43:321-326. crossref(new window)

Rief, S., F. Sinowatz, M. Stojkovic, R. Einspanier, E. Wolf and K. Prelle. 2002. Effects of novel co-culture system on development, metabolism and gene expression of bovine embryos produced in vitro. Reproduction 124:543-556. crossref(new window)

Reiter, R. J., D. X. Tan, C. Osuna and E. Gitto. 2000. Actions of melatonin in the reduction of oxidative stress. J. Biomed. Sci. 7:444-448. crossref(new window)

Rodriguez-Osorio, N., I. J. Kim, H. Wang, A.Kaya and E. Memili. 2007. Melatonin increases cleavage rate of porcine preimplantation embryos in vitro. J. Pineal Res. 43:283-288. crossref(new window)

Siu, A. W., M. Maldonado, M. Sanchez-Hidalgo, D. X. Tan and R. J. Reiter. 2006. Protective effects of melatonin in experimental free radical-related ocular diseases. J. Pineal Res. 40:101-109. crossref(new window)

Sonmez, M., A. Yuce and G. Turk. 2007. The protective effects of melatonin and vitamin E on antioxidant enzyme activities and epididymal sperm characteristics of homocysteine treated male rats. Reprod. Toxicol. 23:226-231. crossref(new window)

Tamura, H., A. Takasaki, I. Miwa, K. Taniguchi, R. Maekawa, H. Asada, T. Taketani, A. Matsuoka, Y. Yamagata, K. Shimamura, H.. Morioka, H. Ishikawa, R. J. Reiter and N. Sugino, 2008. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J. Pineal Res. 44:280-287. crossref(new window)

Tanaka, H., I. Matsumura, S. Ezoe, Y. Satoh, T. Sakamaki, C. Albanese, T. Machii, R. G. Pestell and Y. Kanakura. 2002. E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol. Cell 9:1017-1029. crossref(new window)

Tranguch, S., N. Steuerwald and Y. M. Huet-Hudson. 2003. Nitric oxide synthase production and nitric oxide regulation of preimplantation embryo development. Biol. Reprod. 68:1538-1544.

Viana, K. S., M. C. Caldas-Bussiere, S. G. C. Matta, M. R. Faes, C. S. P. Carvalho and C. R Quirino, 2007. Effect of sodium nitroprusside, a nitric oxide donor, on the in vitro maturation of bovine oocytes. Anim. Reprod. Sci. 102: 217-227. crossref(new window)

Yang, B. K., X. Yang and R. H. Foote. 1993. Effect of growth factors on morula and blastocyst development of in vitro matured and in vitro fertilized bovine oocytes. Theriogenology 40:521-530. crossref(new window)

Yang, J., X. Liu, K. Bhalla, C. N. Kim, A. M. Ibrado, J. Cai, T. I. Peng, D. P. Jones and X. Wang. 1997. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129-1132. crossref(new window)

Yang, M. Y. and R. Rajamahendran. 2002. Expression of Bcl-2 and Bax proteins in relation to quality of bovine embryos produced in vitro. Anim. Reprod. Sci. 70:159-169. crossref(new window)