JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Reducing CH4 Emissions from Grazing Ruminants in New Zealand: Challenges and Opportunities
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Reducing CH4 Emissions from Grazing Ruminants in New Zealand: Challenges and Opportunities
Clark, H.; Kelliher, F.; Pinares-Patino, C.;
  PDF(new window)
 Abstract
Almost half of New Zealand`s greenhouse gas emissions arise from agriculture and enteric methane () emissions arising from ruminant animals constitute 30% of total -e emissions. Enteric emissions have increased by 9% since 1990. Extensive research has been undertaken to develop reliable methods for measuring enteric emissions. New Zealand studies using the SF6 tracer technique suggest that on average this technique yields similar values to the `gold` standard of calorimetry, but with a larger variance. National inventory estimates based on results obtained using the technique will therefore overestimate the uncertainty. Mitigating emissions can be achieved by changing feed type but there are practical and cost barriers to the use of alternative feeds. Forages containing condensed tannins do reduce emissions but are agronomically inferior to the forages currently used. Rumen additives have shown some success in-vitro but results from in-vivo trials with both monensin and fumaric acid have been disappointing. The development of methods for directly manipulating rumen microorganisms are at an early stage and work to develop vaccines that can inhibit methanogenesis has yielded mixed results. The successful identification of sheep with contrasting yields raises the possibility that, in the long term, a breeding approach to mitigation is feasible.
 Keywords
Methane;Rumen;Feed;Monensin;Fumarate;Vaccination;Breeding;
 Language
English
 Cited by
1.
Methane emissions by beef cattle consuming hay of varying quality in the dry forest ecosystem of Costa Rica, Livestock Science, 2016, 193, 45  crossref(new windwow)
2.
Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection, Journal of Dairy Science, 2011, 94, 12, 6122  crossref(new windwow)
3.
Effects of urea supplementation on rumen fermentation characteristics and protozoa populationin vitro, Journal of Applied Animal Research, 2016, 44, 1, 1  crossref(new windwow)
4.
New aspects and strategies for methane mitigation from ruminants, Applied Microbiology and Biotechnology, 2014, 98, 1, 31  crossref(new windwow)
5.
Environmental Sustainability of Alpine Livestock Farms, Italian Journal of Animal Science, 2014, 13, 2, 3155  crossref(new windwow)
6.
Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production, animal, 2013, 7, s2, 303  crossref(new windwow)
7.
Carbon sequestered in the trees on a university campus: a case study, Sustainability Accounting, Management and Policy Journal, 2014, 5, 2, 149  crossref(new windwow)
8.
Implications of global emission policy scenarios for domestic agriculture: a New Zealand case study, Climate Policy, 2016, 1  crossref(new windwow)
 References
1.
Attwood, G. and C. S. McSweeney. 2008. Methanogen genomics to discover targets for methane mitigation technologies and options for alternative $H_2$ utilisation in the rumen. Aust. J. Exp. Agric. 48:28-37. crossref(new window)

2.
Beauchemin, K. A., M. Kreuzer, F. O'Mara and T. A. McAllister. 2008. Nutritional management for enteric methane abatement: a review. Aust. J. Exp. Agric. 48:21-27. crossref(new window)

3.
Beever, D. E., D. J. Thomson, M. J. Ulyatt, S. B. Cammell and M. C. Spooner. 1985. The digestion of fresh perennial (Lolium perenne L. Cv. Melle) and white clover (Trifolium repens L. Cv. Blanca) by growing cattle fed indoors. Br. J. Nutr. 54:763-775. crossref(new window)

4.
Clark, H. 2009. Greenhouse gas emissions from ruminant livestock; are they important and can we reduce them? Proceedings from International Symposium on Impact of Global Warming on Food and Agriculture, Tsukuba, Japan.

5.
Clark, H., C. Pinares-Patino and C. deKlein. 2005. Methane and nitrous oxide emissions from grazed grasslands In: Grassland: A Global Resource (Ed. D. A. McGilloway). Wageningen Academic Publishers, Wageningen, The Netherlands. pp. 279-293.

6.
Cord-Ruwisch, R., H-J. Seitz and R. Conrad. 1988: The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the electron acceptor. Arch. Microbiol. 149:350-357. Doi: 10.1007/BF00411655 crossref(new window)

7.
Goodrich, R. D., J. E. Garrett, D. R. Ghast, M. A. Kirich, D. A. Larson and J. C. Meiske. 1984: Influence of monensin on the performance of cattle. J. Anim. Sci. 58:1484-1498.

8.
Grainger, C., M. J. Auldist, T. Clarke, K. A. Beauchemin, S. M. McGinn, M. C. Hannah, R. J. Eckard and L. B. Lowe. 2008: Use of monensin controlled-release capsules to reduce methane emissions and improve milk production of dairy cows offered pasture supplemented with grain. J. Dairy Sci. 91:1159-1165. doi:10.3168/jds.2007-0319 crossref(new window)

9.
Grainger, C., T. Clarke, S. M. McGinn, M. J. Auldist, K. A. Beauchemin, M. C. Hannah, G. C. Waghorn, H. Clark and R. J. Eckard. 2007. Methane emissions from dairy cows measured using the sulfur hexafluoride $(SF_6)$ tracer and chamber techniques. J. Dairy Sci. 90:2755-2766. crossref(new window)

10.
Intergovernmental Panel on Climate Change 2007: Summary for Policymakers. In: Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Mille). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf 2007

11.
Johnson, K., M. Huyler, H. Westberg, B. Lamb and P. Zimmerman. 1994. "Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique". Environ. Sci. Technol. 28(2):359-362. crossref(new window)

12.
Johnson, K. and D. Johnson. 1995. "Methane emissions from cattle". J. Anim. Sci. 73(8):2483.

13.
Kelliher, F. M., H. Clark, M. H. Smith, K. R. Lassey and R. Sedcole. 2009. Reducing uncertainty of the enteric methane emissions inventory. A report prepared for the New Zealand Ministry of Agriculture and Forestry, Wellington.

14.
Kirchgessner, M., W. Windisch and H. L. Muller. 1995. Nutritional factors for the quantification of methane production. In: Ruminant physiology: digestion, metabolism, growth and reproduction (Ed. W. von Engelhardt, S. Leonhard-Marek, G. Breves and D. Gieseke). Ferdinand Enke Verlag, Stuttgart, 333-348.

15.
Kolver, E. S., P. W. Aspin, G. N. Jarvis, K. M. Elborough and J. R. Roche. 2004: Fumarate reduces methane production from pasture fermented in continuous culture. Proceedings of the New Zealand Society of Animal Production 64:155-159.

16.
Lassey, K., M. Ulyatt, R. Martin, C. Walker and I. David Shelton. 1997. Methane emissions measured directly from grazing livestock in New Zealand. Atmos. Environ. 31:2905-2914. crossref(new window)

17.
Leahy, S. C., W. J. Kelly, E. Altermann, R. S. Ronimus, C. J. Yeoman, D. M. Pacheco, D. Li, Z. Kong, S. McTavish, C. Sang, S. C. Lambie, P. H. Janssen, D. Dey and G. T. Attwood. 2010. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 5:e8926. doi: 10.1371/journal.pone.0008926 crossref(new window)

18.
Lee, J. M., S. L. Woodward, G. C. Waghorn and D. A. Clark. 2004: Methane emissions by dairy cows fed increasing proportions of white clover (Trifolium repens) in pasture. Proceedings of the New Zealand Grassland Association 66:151-155.

19.
Martin, C., A. Ferlay, Y. Chilliard and M. Doreau. 2009. Decrease in methane emissions in dairy cows with increase in dietary linseed content. In: Proceedings of the British Society of Animal Sicence 20 March-1April 2009, Southport, UK. p. 21.

20.
McAllister, T. A. and C. J. Newbold. 2008: Redirecting rumen fermentation to reduce methanogenesis. Aust. J. Exp. Agric. 48:7-13. crossref(new window)

21.
McGinn, S., K. Beauchemin, A. Iwaasa and T. McAllister. 2006. Assessment of the sulfur hexafluoride (SF6) tracer technique for measuring enteric methane emissions from cattle. J. Environ. Qual. 35:1686. crossref(new window)

22.
Min, B. R., T. N. Barry, G. T. Attwood and W. C. McNabb. 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim. Feed Sci. Technol. 106:3-19. crossref(new window)

23.
Molano, G., T. Renard and H. Clark. 2003: The effect of level of feeding and forage quality on methane emissions by wether lambs. Proceedings of the 2nd Joint Australia and New Zealand Forum on Non-$CO_2$ Greenhouse Gas Emissions from Agriculture (Ed. R. Eckard and B. Slattery). Cooperative Research Centre for Greenhouse Gas Accounting, Canberra, Australia. p. F14.

24.
Nkrumah, J. D., E. K. Okine, G. W. Mathison, K. Schmid, C. Li, J. A. Basarab, M. A. Price, Z. Wang and S. S. Moore., 2006. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J. Anim. Sci. 84:145-153.

25.
O'Hara, P., J. M. Freney and M. Ulyatt. 2003. Abatement of agricultural non-carbon dioxide greenhouse gas emissions. A study of research requirements. A report prepared for the Ministry of Agricultue and Forestry on behalf of the Convenor, Ministerial Group on Climate Change, the Minister of Agriculture, and the Primary Industries Council. May 2003, New Zealand Ministry of Agriculture and Forestry, Wellington. www.govt.nz/publications (171pp)

26.
Olesen, J. E., K. Schelde, A. Weiske, M. R. Weisbjerg, W. A. H. Asman and J. Djurhuus. 2006: Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agric. Ecosyst. Environ. 112:207-220. crossref(new window)

27.
Pinares-Patino, C. S., R. Baumont and C. Martin. 2003a. Methane emissions by charolais cows grazing a monospecific pasture of timothy at four stages of maturity. Can. J. Anim Sci. 83:769-777. crossref(new window)

28.
Pinares-Patino, C. and H. Clark. 2008: Reliability of the sulfur hexafluoride tracer technique for methane emission measurement from individual animals: an overview. Aust. J. Exp. Agric. 48:223-229. crossref(new window)

29.
Pinares-Patino, C., C. Holmes, K. Lassey and M. Ulyatt. 2007a. Measurement of methane emission from sheep by the sulphur hexafluoride tracer technique and by the calorimetric chamber: failure and success. Animal 2:141-148.

30.
Pinares-Patino, C. S., M. J. Ulyatt, C. W. Holmes, T. W. Barry, and K. R. Lassey. 2003c: Persistence of the between-sheep variation in methane emission. J. Agric. Sci. Cambridge 140:227-233 crossref(new window)

31.
Pinares-Patino, C. S., M. J. Ulyatt, G. C. Waghorn, C. W. Holmes, T. W. Barry, K. R. Lassey and D. E. Johnson. 2003b: Methane emission by alpaca and sheep fed on lucerne hay or grazed on pastures of perennial ryegrass/white clover or birdsfoot trefoil. J. Agric. Sci. Cambridge 140:215-226. crossref(new window)

32.
Pinares-Patino, C., G. Waghorn, A. Machmuller, B. Vlaming, G. Molano, A. Cavanagh and H. Clark. 2007b: Methane emissions and digestive physiology of non-lactating dairy cows fed pasture forage. Can. J. Anim. Sci. 87:601-613. crossref(new window)

33.
Steinfeld, H., P. Gerber, T. Wassenaar, V. Castel, M. Rosales, C. deHaan. 2006. Livestock's Long Shadow; environmental issues and options. FAO, 2006.

34.
Tedeschi, L. O., D. G. Fox and T. P. Tylutki. 2003: Potential environmental benefits of ionophores in ruminant diets. J. Environ. Qual. 32:1591-1602. crossref(new window)

35.
Thauer, R. K., K. Jungermann and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100-180.

36.
van Dorland, H. A., H. R. Wettstein, H. Leuenberger and M. Kreuzer. 2007: Effect of supplementation of fresh and ensiled clovers to ryegrass on nitrogen loss and methane emissions of dairy cows. Livest. Sci. 111:57-69. crossref(new window)

37.
van Nevel, C. J. and D. I. Demeyer. 1996: Control of rumen methanogenesis. Environ. Monit. Assess. 42:73-97. crossref(new window)

38.
Vlaming, J., N. Lopez-Villalobos, I. Brookes, S. Hoskin and H. Clark. 2008: Within-and between-animal variance in methane emissions in non-lactating dairy cows. Aust. J. Exp. Agric. 48:124-127. crossref(new window)

39.
Waghorn, G. C., J. L. Burke and E. S. Kolver. 2007: Principles of feeding value. In: (Ed. P. V. Rattray, I. M. Brookes, A. M. Nicol, Pasture and Supplements, New Zealand Society of Animal Production), Hamilton, New Zealand. pp. 35-60.

40.
Waghorn, G. C., H. Clark, V. Taufa and A. Cavanagh. 2008: Monensin controlled-release capsules for methane mitigation in pasture-fed dairy cows. Aust. J. Exp. Agric. 48:65-68.

41.
Waghorn, G. C., M. H. Tavendale and D. R. Woodfield. 2002: Methanogenesis from forages fed to sheep. Proceedings of the New Zealand Grassland Association, 64:167-171.

42.
Wedlock, N., G. Pedersen, M. Denis, D. Dey, P. H. Janssen and B. Buddle. 2010: Development of a vaccine to mitigate greenhouse gas emissions in agriculture: Vaccination of sheep with methanogen fractions induces antibodies that block methane production in vitro. N Z Vet. J. 58:29-36. crossref(new window)

43.
Wolin, M. J., T. L. Miller and C. S. Stewart. 1997: Microbemicrobe interactions. In: The rumen microbial ecosystem. Blackie Academic and Professional (Ed. P. N. Hobson and C. S. Stewart), London. 467-491.

44.
Wright, A. D. G., P. Kennedy, C. J. O'Neill, A. F. Toovey, S. Popovski, S. M. Rea, C. L. Pimm and L. Klein. 2004. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22:3976-3985. crossref(new window)