JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Comparisons of In vitro Nitrate Reduction, Methanogenesis, and Fermentation Acid Profile among Rumen Bacterial, Protozoal and Fungal Fractions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparisons of In vitro Nitrate Reduction, Methanogenesis, and Fermentation Acid Profile among Rumen Bacterial, Protozoal and Fungal Fractions
Lin, M.; Schaefer, D.M.; Guo, W.S.; Ren, L.P.; Meng, Q.X.;
  PDF(new window)
 Abstract
The objectives were to compare the ability of various rumen microbial fractions to reduce nitrate and to assess the effect of nitrate on in vitro fermentation characteristics. Physical and chemical methods were used to differentiate the rumen microbial population into the following fractions: whole rumen fluid (WRF), protozoa (Pr), bacteria (Ba), and fungi (Fu). The three nitrogen substrate treatments were as follows: no supplemental nitrogen source, nitrate or urea, with the latter two being isonitrogenous additions. The results showed that during 24 h incubation, WRF, Pr and Ba fractions had an ability to reduce nitrate, and the rate of nitrate disappearance for the Pr fraction was similar to the WRF fraction, while the Ba fraction needed an adaptation period of 12 h before rapid nitrate disappearance. The WRF fraction had the greatest methane () production and the Pr fraction had the greatest prevailing concentration (p<0.05). Compared to the urea treatment, nitrate diminished net gas and production during incubation (p<0.05), and ammonia-N (-N) concentration (p<0.01). Nitrate also increased acetate, decreased propionate and decreased butyrate molar proportions (p<0.05). The Pr fraction had the highest acetate to propionate ratio (p<0.05). The Pr fraction as well as the Ba fraction appears to have an important role in nitrate reduction. Nitrate did not consistently alter total VFA concentration, but it did shift the VFA profile to higher acetate, lower propionate and lower butyrate molar proportions, consistent with less production by all microbial fractions.
 Keywords
Nitrate;Rumen;Protozoa;Bacteria;Fungi;Methane;
 Language
English
 Cited by
1.
Effect of Sodium Nitrate and Nitrate Reducing Bacteria on In vitro Methane Production and Fermentation with Buffalo Rumen Liquor,;;;;

아세아태평양축산학회지, 2012. vol.25. 6, pp.812-817 crossref(new window)
2.
Effects of Nitrate Addition on Rumen Fermentation, Bacterial Biodiversity and Abundance,;;;;;;;

아세아태평양축산학회지, 2015. vol.28. 10, pp.1433-1441 crossref(new window)
 References
1.
Allison, M. J. and C. A. Reddy. 1984. Adaptations of gastrointestinal bacteria in response to changes in dietary oxalate and nitrate. In: Proceedings of the Third International Symposium on Microbial Ecology (Ed. M. J. Klug and C. A. Reddy). Am. Soc. Microbiol. Washington, DC., USA. pp. 248-256.

2.
Anderson, R. C. and M. A. Rasmussen. 1998. Use of a novel nitrotoxin metabolizing bacterium to reduce ruminal methane production. Bioresour. Technol. 64:89-95. crossref(new window)

3.
Bauchop, T. 1979. Rmnen anaerobic fungi of cattle and sheep. Appl. Environ. Microbiol. 318:148-158.

4.
Coleman, G. S. 1975. The interrelationship between ciliate protozoa and bacteria. In: Digestion and Metabolism in the Ruminant (Ed. W. McDonald and A. C. I. Warner), University of New England Publishing Unit, Armidale, Australia. pp. 149-164.

5.
Conrad, R. and B. Wetter. 1990. Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Arch. Microbiol. 155:94-98. crossref(new window)

6.
Farra, P. A. and L. D. Satter. 1971. Manipulation of the ruminal fermentation. III. Effect of nitrate on ruminal volatile fatty acid production and milk composition. J. Dairy Sci. 54:1018-1024. crossref(new window)

7.
Farra, P. A. 1969. Nitrate as an alternate electron acceptor in ruminal fermentation and its effect on volatile fatty acid production. M.S. Thesis, University of Wisconsin, Madison, Wisconsin.

8.
Finlay, B. J., G. Esteban, K. J. Clarke, A. G. Williams, T. M. Embley and R. P. Hirt. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 117:157-162. crossref(new window)

9.
Geurink, J. H., A. Malestein, A. Kemp and A. Klooster. 1979. Nitrate poisoning in cattle. 3. The relationship between nitrate intake with hay or fresh roughage and the speed of intake on the formation of methaemoglobin. Neth. J. Agric. Sci. 27:268-276.

10.
Guo, W. S., D. M. Schaefer, X. X. Guo, L. P. Ren and Q. X. Meng. 2009. Use of nitrate-nitrogen as a sole dietary nitrogen source to inhibit ruminal methanogenesis and to improve microbial nitrogen synthesis in vitro. Asian-Aust. J. Anim. Sci. 22:542-549. crossref(new window)

11.
Hungate, R. E. 1966. The rumen and its microbes. Academic Press, New York, USA.

12.
Iwamoto, M., N. Asanuma and T. Hino. 1999. Effect of nitrate combined with fumarate on methanogenesis, fermentation, and cellulose digestion by mixed ruminal microbes in vitro. Anim. Sci. J. 70:471-478.

13.
Jones, G. A. 1972. Dissimilatory metabolism of nitrate by the rumen microbiota. Can. J. Microbiol. 18:1783-1787. crossref(new window)

14.
Johnson, J. L., N. R. Schneiderm, C. L. Kelling and A. R. Doster. 1983. Nitrate exposure in perinatal beef calves. Am. Assn. Vet. Lab Diagnosticians. 30th Proc. pp. 167-180.

15.
Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.

16.
Lee, S. S., J. K. Ha and K. J. Cheng. 2000. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl. Environ. Microbiol. 66:3807-3813. crossref(new window)

17.
Marinho, A. A. M. 1986. Nitrate toxicity in ruminants metabolism of nitrate and nitrite in the rumen. Rev. Port. Cienc. Vet. 81:67-81.

18.
Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. (Camb.) 93:217-222. crossref(new window)

19.
Miyazaki, A. 1977. Effects of dietary nitrate on the performance of ruminants. Jpn. J. Zootech. Sci. 48:53-61.

20.
Pfister, J. A. 1988. Nitrate intoxication of ruminant livestock. In: The Ecology and Economic Impact of Poisonous Plants on Livestock Production (Ed. L. F. James, M. H. Ralphs and D. B. Nielsen). Westview Press, Boulder, Colorado, USA. pp. 233-259.

21.
Rodhe, H. 1990. A comparison of the contribution of various gases to the greenhouse effect. Science 248:1217-1219. crossref(new window)

22.
Russell, J. B. and R. J. Wallace. 1988. Energy yielding and consuming reactions. In: The rumen microbial ecosystem (Ed. P. N. Hobson). Elsevier science publisher, New York, USA. pp. 185-215.

23.
Sar, C., B. Mwenya, B. Santoso, K. Takaura, R. Morikawa, N. Isogai, Y. Asakura, Y. Toride and J. Takahashi. 2005a. Effect of Escherichia coli W3110 on ruminal methanogenesis and nitrate/nitrite reduction in vitro. Anim. Feed Sci. Technol. 118:295-306. crossref(new window)

24.
Sar C., B. Mwenya, B. Santoso, K. Takaura, R. Morikawa, N. Isogai, Y. Asakura, Y. Toride and J. Takahashi. 2005b. Effect of Escherichia coli wild type or its derivative with high nitrite reductase activity on in vitro ruminal methanogenesis and nitrate/nitrite reduction. J. Anim. Sci. 83:644-652.

25.
Sar, C., B. Mwenya, B. Pen, K. Takaura, R. Morikawa, A. Tsujimoto, N. Isogai, Y. Asakura, I. Shinzato, Y. Toride and J. Takahashi. 2006. Effect of wild type Escherichia coli W3110 or Escherichia coli nir-Ptac on methane emission and nitrate toxicity in nitrate-treated sheep. International Congress Series, 1293:193-196. crossref(new window)

26.
SAS. 2008. SAS $OnlineDoc^{\circledR}$ 9.1.3. SAS Inst. Inc., Cary, N.C. USA.

27.
Stewart, C. S. and M. P. Bryant. 1988. The rumen bacteria. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Blackie Academic & Professional, London, UK. pp. 21-75.

28.
Takahashi, J. and B. A. Young. 1991. Prophylactic effect of L-cysteine on nitrate-induced alteration in respiratory exchange and metabolic rate in sheep. Anim. Feed Sci. Technol. 35:105-113. crossref(new window)

29.
Van Nevel, C. J. and D. I. Demeyer. 1996. Control of rumen methanogenesis. Environ. Monit. Assess. 42:73-97. crossref(new window)

30.
Veira, D. W. 1986. The role ciliate protozoa in nutrition of the ruminant. J. Anim. Sci. 63:1547-1567.

31.
Woods, D. D. 1938. The reduction of nitrate to ammonia by Clostridum welchii. Biochem. J. 32:2000-2012.

32.
Yoshida, J., Y. Nakamura and R. Nakamura. 1982. Effect of protozoa fraction and lactate on nitrate metabolism of microorganisms in sheep rumen. Japan J. Zootech. Sci. 53:677-685.

33.
Zhang, Y. Q., W. Gao and Q. X. Meng. 2007. Fermentation of plant cell walls by ruminal bacteria, protozoa and fungi and their interaction with fiber particle size. Arch Anim. Nutr. 61:114-125. crossref(new window)