Advanced SearchSearch Tips
Comparative Effects of Sodium Gluconate, Mannan Oligosaccharide and Potassium Diformate on Growth Performances and Small Intestinal Morphology of Nursery Pigs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparative Effects of Sodium Gluconate, Mannan Oligosaccharide and Potassium Diformate on Growth Performances and Small Intestinal Morphology of Nursery Pigs
Poeikhampha, T.; Bunchasak, C.;
  PDF(new window)
This study was conducted to compare the effects of dietary supplementation of Sodium Gluconate (SG), Mannan Oligosaccharide (MOS) and Potassium Diformate (PDF) on growth performance and small intestinal morphology in nursery piglets. One hundred forty four female piglets () were divided into 4 treatments with six replicates of six pigs each. The pigs received a control diet or diets supplemented with SG, MOS and PDF at 2,500, 3,000 and 8,000 ppm; respectively, for 6 weeks. Supplementation of SG, MOS or PDF increased final body weight, average daily gain and tended to improve feed to gain ratio (p = 0.02, 0.04 and 0.16; respectively), other than average daily feed intake, intestinal pH and the bacterial populations were not influenced by the dietary treatments. SG significantly decreased the ammonia concentration in the caecum (p<0.05) and supplementation of SG, MOS or PDF tended to increase lactic acid and total short chain fatty acid concentration in the caecum (p = 0.08, 0.09; respectively), in addition SG, MOS or PDF slightly increased butyric acid concentration in the caecum (p = 0.14). SG highly significant increased the villous height in jejunum (p<0.01) and supplementing SG, MOS or PDF significantly increased crypt depth in jejunum (p<0.05), moreover, PDF significantly increased villous height and crypt depth ratio in jejunum (p<0.05) compared with control. The dietary treatments did not influence villous height and crypt depth in duodenum and villous height in jejunum (p>0.05). It can be concluded that supplementing SG, MOS or PDF as a feed additive has the potential to improve the growth performance, the intestinal lactic acid bacteria population, intestinal short-chain fatty acid concentration and the intestinal morphology of pigs.
Sodium Gluconate;Mannan Oligosaccharide;Potassium Diformate;Growth Performance;Intestinal Morphology;Pigs;
 Cited by
Mannan Oligosaccharides in Nursery Pig Nutrition and Their Potential Mode of Action, Animals, 2012, 2, 4, 261  crossref(new windwow)
Effects of potassium diformate on the gastric function of weaning piglets, Animal Production Science, 2016, 56, 7, 1161  crossref(new windwow)
Asano, T., K. Yuasa, K. Kunugita, T. Teraji and T. Mitsuoka. 1994. Effects of gluconic acid on human faecal bacteria. Microb. Ecol. Health Dis. 7:247-256. crossref(new window)

Baurhoo, B., P. R. Ferket and X. Zhao. 2009. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poult. Sci. 88:2262-2272. crossref(new window)

Biagi, G., A. Piva, M. Moschini, E. Vezzali and F. X. Roth. 2006. Effect of gluconic acid on piglet growth performance, intestinal microflora, and intestinal wall morphology. J. Anim. Sci. 84:370-378.

Davis, M. E., C. V. Maxwell, D. C. Brown, B. Z. de Rodas, Z. B. Johnson, E. B. Kegley, D. H. Hellwig and R. A. Dvorak. 2002. Effect of dietary mannan oligosaccharide and (or) pharmacological additions of supplemental copper on growth performance and immunocompetence of weanling and growing/ finishing pigs. J. Anim. Sci. 80:2887-2894.

Delost, M. D. 1997. Introduction to diagnostic microbiology: A Text and Workbook. Mosby, Missouri.

Duncan, D. B. 1955. Multiple range test. Biometrics. Washington, DC.

Fuller, R. and G. Perdigon. 2003. Gut flora, nutrition, immunity and health. Blackwell. Oxford.

Guedes, C. M., J. L. Mourão, S. R. Silva, M. J. Gomes, M. A. M. Rodrigues and V. Pinheiro. 2009. Effects of age and mannanoligosaccharides supplementation on production of volatile fatty acids in the caecum of rabbits. Anim. Feed Sci. Technol. 150:330-336. crossref(new window)

Hunter, D. R. and I. H. Segel. 1973. Effect of weak acids on amino acid transport by pencillium chrysogenum: evidence of a proton or charge gradient as the driving force. J. Bacteriol. 113:1184-1192.

Knarreborg, A., N. Miquel, T. Granli and B. B. Jensen. 2002. Establishment and application of an in vitro methodology to study the effects of organic acids on coliform and lactic acid bacteria in the proximal part of the gastrointestinal tract of piglets. J. Anim. Feed Sci. 99:131-140. crossref(new window)

Lueck, E. 1980. Antimicrobial food additives: Characteristics, Uses, Effects. Springer. Berlin.

Mroz, Z., D. E. Reese, M. Overland, J. T. van Diepen and J. Kogut. 2002. The effects of potassium diformate and its molecular constituents on the apparent ileal and fecal digestibility and retention of nutrients in growing-finishing pigs. J. Anim. Sci. 80:681-690.

Nunez, M. C., J. D. Bueno, M. V. Ayudarte, A. Almendros, A. Rios, M. D. Suarez and A. Gil. 1996. Dietary restriction induces biochemical and morphometric changes in the small intestine of nursery piglets. J. Nutr. 126:933-944.

Pluske, J. R., D. J. Hampson and I. H. Williams. 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest. Prod. Sci. 51:215-236. crossref(new window)

Pluske, J. R., I. H. Williams and F. X. Aheme. 1995. Nutrition of the neonatal pig. In: The Neonatal Pig: Development and Survival (Ed. M. A. Varley). CAB International, Wallingford, Oxon.

Poeikhampha, T. and C. Bunchasak. 2010. Effect of sodium gluconate on pH value, ammonia and short chain fatty acids concentration in batch culture of porcine cecal digesta. J. Appl. Sci. 10:1471-1475. crossref(new window)

Poeikhampha, T., C. Bunchasak, S. Koonawootrittriron, K. Poosuwan and K. Prahkarnkaeo. 2007. Effects of sodium gluconate on production performance and intestinal microorganisms of starter piglets, pp 74-77. In: Proc. Int. Conf. on "Integration of Science & Technology for Sustainable Development" (Ed. K. Soytong and K. D. Hyde), Faculty of Agriculture Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok.

Roediger, W. E. 1980. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793-798. crossref(new window)

Roth, F. X. and M. Kirchgessner. 1998. Organic acids as feed additives for young pigs: Nutritional and gastrointestinal effects. J. Anim. Feed Sci. 7(Suppl. 1):25-33.

SAS. 1988. SAS User's Guide, Statistics. SAS Institute, Cary, North Carolina.

Savage, T. F., P. F. Cotter and E. I. Zakrzewska. 1996. The effect of feeding mannan oligosaccharide on immunoglobulins, plasma IgG and bile IgA, of Wrolstad MW male turkeys. Poult. Sci. 75:143.

Scheppach, W., H. P. Bartram and F. Richter. 1995. Role of shortchain fatty acids in the prevention of colorectal cancer. Eur. J. Cancer 31A:1077-1080.

Spring, P., C. Wenk, K. A. Dawson and K. E. Newman. 2000. The effects of dietary mannanoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the cecal of salmonella-challenged broiler chicks. Poult. Sci. 79:205-211. crossref(new window)

Steel, R. G. D. and J. H. Torrie. 1980. Principles and procedures of statistics. McGraw-Hill, New York.

Steven, J. K., P. S. Miller and A. J. Lewis. 2001. Factors affecting small intestine development in weanling pigs. Nebraska Swine Report. University of Nebraska. Nebraska. USA.

Sutton, A. L., A. G. Mathew, A. B. Scheidt, J. A. Patterson and D. T. Kelly. 1991: Effects of carbohydrate sources and organic acids on intestinal microflora and performance of the weanling pig. In: Digestive Physiology in Pigs (Ed. M. W. A. Verstegen, J. Huisman and L. A. den Hartog). Pudoc Wageningen, the Netherlands, pp. 422-427.

Taube, V. A., M. E. Neu, Y. Hassan, J. Verspohl, M. Beyerbach and J. Kamphues. 2009. Effects of dietary additives (potassium diformate/organic acids) as well as influences of grinding intensity (coarse/fine) of dietsfor weaned piglets experimentally infected with Salmonella Derby or Escherichia coli. J. Anim. Physiol. Anim. Nutr. 93:350-358. crossref(new window)

Tsukahara, T., H. Koyama, M. Okada and K. Ushida. 2002. Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrateproducing bacteria. J. Nutr. 132:2229-2234.

Van Beers-Schreurs, H. M., M. J. Nabuurs, L. Vellenga, H. J. Kalsbeekvan der Valk, T. Wensing and H. J. Breukink. 1998. Weaning and the weanling diet influence the villous height and crypt depth in the small intestine of pigs and alter the concentrations of short-chain fatty acids in the large intestine and blood. J. Nutr. 128:947-953.

Yousef, A. E. and C. Carlstrom. 2003. Food microbiology; A Laboratory Manual. A John Wiley & Sons, Inc. United Kingdom.