Advanced SearchSearch Tips
Genomic Analyses of Toll-like Receptor 4 and 7 Exons of Bos indicus from Temperate Sub-himalayan Region of India
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Genomic Analyses of Toll-like Receptor 4 and 7 Exons of Bos indicus from Temperate Sub-himalayan Region of India
Malik, Y.P.S.; Chakravarti, S.; Sharma, K.; Vaid, N.; Rajak, K.K.; Balamurugan, V.; Biswas, S.K.; Mondal, B.; Kataria, R.S.; Singh, R.K.;
  PDF(new window)
Toll-like receptors (TLRs) play an important role in the recognition of invading pathogens and the modulation of innate immune responses in mammals. The TLR4 and TLR7 are well known to recognize the bacterial lipopolysaccharide (LPS) and single stranded (ssRNA) ligands, respectively and play important role in host defense against Gram-negative bacteria and ssRNA viruses. In the present study, coding exon fragments of these two TLRs were identified, cloned, sequenced and analyzed in terms of insertion-deletion polymorphism, within bovine TLRs 4 and 7, thereby facilitating future TLR signaling and association studies relevant to bovine innate immunity. Comparative sequence analysis of TLR 4 exons revealed that this gene is more variable, particularly the coding frame (E3P1), while other parts showed percent identity of 95.7% to 100% at nucleotide and amino acid level, respectivley with other Bos indicus and Bos taurus breeds from different parts of the world. In comparison to TLR4, sequence analysis of TLR7 showed more conservation among different B. indicus and B. taurus breeds, except single point mutation at 324 nucleotide position (AAA to AAM) altering a single amino acid at 108 position (K to X). Percent identity of TLR7 sequences (all 3 exons) was between 99.2% to 100% at nucleotide and amino acid level, when compared with available sequence database of B. indicus and B. taurus. Simple Modular Architecture Research Tool (SMART) analysis showed variations in the exon fragments located in the Leucine Rich Repeat (LRR) region, which is responsible for binding with the microbial associated molecular patterns and further, downstream signaling to initiate anti-microbial response. Considering importance of TLR polymorphism in terms of innate immunity, further research is warranted.
Bovine TLR 4;TLR 7;Exons;LRR;Innate Immunity;Sequence Analyses;
 Cited by
Tyrosine phosphorylation of monocyte-derived macrophage proteins in buffalo (Bubalus bubalis): A potential phenotype of natural resistance, Open Journal of Animal Sciences, 2013, 03, 02, 127  crossref(new windwow)
Aderem, A. and R. J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune responses. Nature 406:782-787. crossref(new window)

Akira, S. and K. Takeda. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4:499-511. crossref(new window)

Akira, S., S. Uematsu and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783-801. crossref(new window)

Barton, G. M., J. C. Kagan and R. Medzhitov. 2006. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat. Immunol. 7:49-56. crossref(new window)

Beutler, B. and M. Rehli. 2002. Evolution of TIR, tolls and TLRs: functional inferences from computational biology. Curr. Top. Microbiol. Immunol. 270:1-21.

Diebold, S. S., T. Kaisho, H. Hemmi, S. Akira and C. Reis e Sousa. 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529-1531. crossref(new window)

Hashimoto, C., K. L. Hudson and K. V. Anderson. 1988. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269-279. crossref(new window)

Janeway, Jr. C. A. and R. Medzhitov. 2002. Innate immune recognition. Annu. Rev. Immunol. 20:197-216. crossref(new window)

Jin, M. S., S. E. Kim, J. Y. Heo, M. E. Lee, H. M. Kim, S. G. Paik, H. Lee and J. O. Lee. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130:1071-1082. crossref(new window)

Keestra, A. M., M. R. de Zoete, R. A. van Aubel and J. P. van Putten. 2008. Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin. Mol. Immunol. 45:1298-1307. crossref(new window)

Lemaitre, B., E. Nicolas, L. Michaut, J. M. Reichhart and J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-983. crossref(new window)

Loftus, R. T., D. E. MacHugh, D. G. Bradley, P. M. Sharp, P. Cunningham. 1994. Evidence for two independent domestications of cattle. Proc. Natl. Acad. Sci. USA 91:2757-2761. crossref(new window)

Matsushima, N., T. Tanaka, P. Enkhbaya, T. Mikami, M. Taga, K. Ymada and Y. Kuroki. 2007. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics 8:124. crossref(new window)

Medzhitov, R. and C. A. Jr. Janeway. 2000. Innate immunity. N. Engl. J. Med. 343:338-344. crossref(new window)

Muzio, M., N. Polentarutti, D. Bosisio, M. K. Prahladan and A. Mantovani. 2000. Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes. J. Leukoc. Biol. 67:450-456.

O'Neill, L. A. 2004. TLRs: Professor Mechnikov, sit on your hat. Trends Immunol. 25:687-693. crossref(new window)

Pandey, S. and D. K. Agrawal. 2006. Immunobiology of Toll-like receptors: Emerging trends. Immun. Cell Biol. 84:333-341. crossref(new window)

Pasare, C. and R. Medzhitov. 2004. Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 6:1382-1387. crossref(new window)

Poltorak, A., P. Ricciardi-Castagnoli, S. Citterio and B. Beutler. 2000. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc. Natl. Acad. Sci. USA 97:2163-2167. crossref(new window)

Schultz, J., R. R. Copley, T. Doerks, C. P. Ponting and P. Bork. 2000. SMART: A Web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28:231-234. crossref(new window)

Takeda, K., T. Kaisho and S. Akira. 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335-376. crossref(new window)

Underhill, D. M., A. Ozinsky, K. D. Smith and A. Aderem. 1999. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl. Acad. Sci. USA 96:14459-14463. crossref(new window)

Weber, A. N. R., M. A. Morse and N. J. Gay. 2004. Four N-linked glycosylation sites in human Toll-like receptor 2 cooperate to direct efficient biosynthesis and secretion. J. Biol. Chem. 279:34589-34594. crossref(new window)

West, A. P., A. A. Koblansky and S. Ghosh. 2006. Recognition and signaling by Toll-like receptors. Annu. Rev. Cell Dev. Biol. 22:409-437. crossref(new window)

Zhou, H., J. Gu, S. J. Lamont and X. Gu. 2007. Evolutionary analysis for functional divergence of the toll-like receptor gene family and altered functional constraints. J. Mol. Evol. 65:119-123. crossref(new window)