Advanced SearchSearch Tips
Immunophenotype Characterization for Swine Selected Line, Which is Resistant for the Mycoplasma Pneumonia
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Immunophenotype Characterization for Swine Selected Line, Which is Resistant for the Mycoplasma Pneumonia
Katayama, Masafumi; Fukuda, Tomokazu; Okamuara, Toshihiro; Suda, Yoshihito; Suzuki, Eisaku; Uenishi, Hirohide; Suzuki, Keiichi;
  PDF(new window)
Mycoplasma Pneumonia of swine (MPS) decreases the daily growth of pigs, and, co-infection with a virus sometimes causes severe pneumonia. Genetic selection of pigs resistant to the pulmonary MPS lesion might solve the economic loss due to MPS in animal production. Here, we examined the immunophenotype of Landrace line (Miyagino L2), genetically selected to reduce the incidence of pulmonary MPS lesion for 5 generations in Miyagi Prefecture Animal Industry Experiment Station. Although this line is expected to be resistant to the pulmonary MPS lesion, the biological characteristics of its immune function are not clear. We investigated details of the immunorelated phenotype of Miyagino L2 at the hematological and molecular biological level, including cytokine expression, and compared the results with that of non-genetically selected Landrace. Miyagino L2 showed decreased antigen-specific IgG and IgM production and increased CD8-positive T-cell population, and high levels of cortisol concentration, suggesting that the MPS-resistant phenotype is associated these immunological differences. Additionally, T-cell CD4 expression was highly correlated with the MPS expected breeding value. Although the detailed mechanisms underlying this high correlation remain unknown, our result suggested that the genetic selection of the expression level of CD4 might be useful to improve MPS resistance in pig production.
MPS Lesion;Immunoglobulin;T Cell;Biomarker;Porcine;CD4 and CD8;
 Cited by
Genetic selection for resistance to mycoplasmal pneumonia of swine (MPS) in the Landrace line influences the expression of soluble factors in blood after MPS vaccine sensitization, Animal Science Journal, 2013, 85, 4, 365  crossref(new windwow)
Immunological characterization of peripheral blood leukocytes using vaccine for mycoplasmal pneumonia of swine (MPS) in swine line selected for resistance to MPS, Animal Science Journal, 2013, 13443941, n/a  crossref(new windwow)
Immunogenic properties of Landrace pigs selected for resistance to mycoplasma pneumonia of swine, Animal Science Journal, 2015, 87, 3, 321  crossref(new windwow)
Correlated response of peripheral blood cytokines with selection for reduced mycoplasma pneumonia of swine lesions in Landrace pigs, Animal Science Journal, 2015, 87, 4, 477  crossref(new windwow)
Immunogenic properties and mycoplasmal pneumonia of swine (MPS) lung lesions in Large White pigs selected for higher peripheral blood immune capacity, Animal Science Journal, 2015, 87, 5, 638  crossref(new windwow)
Mycoplasma pneumonia of swine (MPS) resistance and immune characteristics of pig lines generated by crossing an MPS pulmonary lesion selected Landrace line and a highly immune capacity selected Large White line, Animal Science Journal, 2015, 87, 8, 972  crossref(new windwow)
Effects of mycoplasmal pneumonia of swine (MPS) lung lesion-selected Landrace pigs on MPS resistance and immune competence in three-way crossbred pigs, Animal Science Journal, 2016, 88, 4, 575  crossref(new windwow)
Potential use of local and systemic humoral immune response parameters to forecast Mycoplasma hyopneumoniae associated lung lesions, PLOS ONE, 2017, 12, 4, e0175034  crossref(new windwow)
Asai, T. M. Okada, M. Ono, T. Irisawa, Y. Mori, Y. Yokomizo and S. Sato. 1993. Increased levels of tumor necrosis factor and interleukin-1 in bronchoalveolar lavage fluids from pigs infected with Mycoplasma hyopneumoniae. Vet. Immunol. Immunopathol. 38:253-260. crossref(new window)

Asai, T. M. Okada, M. Ono, Y. Mori, Y. Yokomizo and S. Sato. 1994. Detection of interleukin-6 and prostaglandin E2 in bronchoalveolar lavage fluids of pigs experimentally infected with Mycoplasma hyopnemoniae. Vet. Immunol. Immunopathol. 44:97-102. crossref(new window)

Blanchard, B. M., M. Vena, A. Cavalier, J. L. Lannic, J. Gouranton and M. Kobisch. 1992. Electron microscopic observation of the respiratory tract of SPF piglets inoculated with Mycoplasma hyopneumoniae. Vet. Microbiol. 30:329-341. crossref(new window)

Brown-Borg, H. M., H. G. Klemcke and F. Blecha. 1993. Lymphocyte proliferative responses in neonatal pigs with high or low plasma cortisol concentration after stress induced by restraint. Am. J. Vet. Res. 54:2015-2020.

Choi, C. D. Kwon, K. Jung, Y. Ha, Y. H. Lee, O. Kim, H. K. Park, S. H. Kim, K. K. Hwang and C. Chae. 2006. Expression of inflammatory cytokines in pigs experimentally infected with Mycoplasma hyopneumoniae. J. Comp. Pathol. 134:40-46. crossref(new window)

Davis, J. K., R. F. Parker, H. White, D. Dziedzic, G. Taylor, M. K. Davidson, N. R. Cox and G. H. Cassell. 1985. Strain differences in susceptibility to murine respiratory mycoplasmosis in C57BL/6 and C3H/HeN mice. Infection Immunology 50:647-654.

DeBey, M. C., C. D. Jacobson and R. F. Ross. 1992. Histochemical and morphologic changes of porcine airway epithelial cells in response to infection with Mycoplasma hyopneumoniae. Am. J. Vet. Res. 53:17705-17710.

Johnson, R. W., E. H. Borell, L. L. Anderson, L. D. Kojic and J. E. Cunnick. 1994. Intracerebroventricular injection of corticotropin-releasing hormone in the pig: acute effects on behavior, adrenocorticotropin secretion, and immune suppression. Endocrinology 135:642-648. crossref(new window)

Katayama, M., T. Fukuda, T. Okamura, E. Suzuki, K. Tamura, Y. Shimizu, Y. Suda and K. Suzuki. 2011. Effect of dietary addition of seaweed and licorice on the immune performance of pigs. Anim. Sci. J. 82:274-281. crossref(new window)

Kyriakis, S. C., K. Saoulidis, S. Lekkas, Ch. C. Miliotis, P. A. Papoutsis and S. Kennedy. 2002. The effects of immunomodulation on the clinical and pathological expression of postweaning multisystemic wasting syndrome. J. Comp. Pathol. 126:38-46. crossref(new window)

Lorenzo, H., O. Quesada, P. Assuncao, A. Castro and F. Rodriguez. 2006. Cytokine expression in porcine lungs experimentally infected with Mycoplasma hyopneumoniae. Vet. Immunol. Immunopathol. 109:199-207. crossref(new window)

Mebus, C. A. and N. R. Underdahl. 1977. Scanning electron microscopy of trachea and bronchi from gnotobiotic pigs inoculated with Mycoplasma hyopneumoniae. Am. J. Vet. Res. 38:1249-1254.

Messier, S. R. F. Ross and P. S. Paul. 1989. Humoral and cellular immune responses of pigs inoculated with Mycoplasma hyopneumoniae. Am. J. Vet. Res. 51:52-58.

Mosmann, T. R. and R. L. Coffman. 1989. $T_H1\;and\;T_H2$ cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7:145-173. crossref(new window)

Mosmann, T. R., H. Cherwinski, M. W. Bond, M. A. Giedlin and R. L. Coffman. 1986. Two types of murine helper T cell clone. Part I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136:2348-2357.

Morrison, D. F., D. L. Foss and M. P. Murtaugh. 2000. Interleukin-10 gene therapy-mediated amelioration of bacterial pneumonia. Infect. Immun. 68:4752-4758. crossref(new window)

Muneta, Y., Y. Minagawa, Y. Shimoji, Y. Ogawa, H. Hikono and Y. Mori. 2008. Immune response of gnotobiotic piglets against Mycoplasma hyopneumoniae. J. Vet. Med. Sci. 70:1065-1070. crossref(new window)

Muneta, Y., H. Uenishi, R. Kikuma, K. Yoshihara, Y. Shimoji, R. Yamamoto, N. Hamashima, Y. Yokomizo and Y. Mori. 2003. Porcine TLR2 and TLR6: Identification and their involvement in Mycoplasma hyopneumoniae infection. J. Interferon Cytokine Res. 23:583-590. crossref(new window)

Murtaugh, M. P., C. R. Johnson, Z. Xiao, R. W. Scamurra and Y. Zhou. 2009. Species specialization in cytokine biology: is interleukin-4 central to the Th1-Th2 paradigm in swine? Dev. Comp. Immunol. 33:344-352. crossref(new window)

Ross, R. F. 1999. Mycoplasmal disease. In: Disease of Swine (Ed. B. E. Straw, S. D. Allaire, W. L. Mengeling and D. J. Taylor). Iowa State University Press, Ames, pp. 495-509.

Sarradell, J. M. Andrada, A. S. Ramirez, A. Fernandez, J. C. Gomez-Villamandos and A. Jover. 2003. A morphologic and immunohistochemical study of the bronchus-associated lymphoid tissue of pigs naturally infected with Mycoplasma hyopneumoniae. Vet. Pathol. 40:395-404. crossref(new window)

Suzuki, K., W. Onodera, Y. Kumagai, T. Kachi, Y. Shimizu, J. Yoshino, Y. Suda and J. Kobayashi. 2009. Effects of dietary seaweed, ${\beta}-glucan$ and yeast on immunity and growth traits in growing pigs. Nihon Chikusan Gakkaiho 80:27-34. crossref(new window)

Tajima, M., T. Yagihashi, T. Nunoya, A. Takeuchi and F. Ohashi. 1984. Mycoplasma hyopneumoniae infection in pigs immunosuppressed by thymectomy and treatment with antithymocyte serum. Am. J. Vet. Res. 45:1928-1932.

Tayama, T., K. Suzuki, S. Mikawa, T. Awata, H. Uenishi, T. Hayashi, K. Maeda, T. Kachi, Y. Uemoto, H. Kano, T. Shibata, C. Kojima and A. Nishida. 2006. Identification of quantitative trait loci for immune traits in landrace purebred swine. Jpn. J. Swine Science 43:187-194. crossref(new window)

Thacker, E. L., P. G. Halbur, R. F. Ross, R. Thanawongnuwech and B. J. Thacker. 1999. Mycoplasma hyopneumoniae potentiation of porcine reproductive and respiratory syndrome virus-induced pneumonia. J. Clin. Microbiol. 37:620-627.

Wallgren, P., I. L. Wilen and C. Fossum. 1994. Influence of experimentally induced endogenous production of cortisol on the immune capacity in swine. Vet. Immunol. Immunopathol. 42:301-316. crossref(new window)

Williams, P. N., C. T. Collier, J. A. Carroll, T. H. Jr. Welsh and J. C. Laurenz. 2009. Temporal pattern and effect of sex on lipopolysaccharide-induced stress hormone and cytokine response in pigs. Domest. Anim. Endocrinol. 37:139-147. crossref(new window)