Advanced SearchSearch Tips
Effects of Micronization on the In situ and In vitro Digestion of Cereal Grains
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Micronization on the In situ and In vitro Digestion of Cereal Grains
McAllister, T.A.; Sultana, H.;
  PDF(new window)
The effects of micronization on in situ and in vitro nutrient disappearances of wheat, barley and corn were investigated in a series of experiments. In Experiment 1, chemical composition and in situ dry matter disappearance (DMD) of six varieties of wheat were determined. In addition, an in vitro study was completed using ground micronized and unmicronized wheat (var. Kansas). In Experiment 2, three varieties of wheat (Kansas, Sceptre and Laura) and in Experiment 3, three cereal grains (wheat, barley and corn) were either micronized for 1 min to attain internal kernel temperatures of 90-100 or not (controls), and DM, protein and starch disappearances were estimated. In Experiment 2, an in vitro study was also completed using ground micronized and unmicronized wheat (var. Kansas). Wheat samples varied with respect to crude protein (10.0-21.2%), starch (61.6-73.9%), NDF (8.5-11.8%), volume weight (753-842 g/L) and kernel hardness (0.0-32.0). Rate (p = 0.003) and extent (p = 0.001) of in situ DMD differed among wheat varieties. Correlations between in situ kinetics, and chemical and physical properties of wheat varieties showed that protein content was negatively correlated with the rate of disappearance ( = -0.77). Micronization of all grains markedly reduced (p = 0.001) the rate and extent of DM, and protein disappearances as compared to control samples. Micronization increased (p<0.05) the digestion of starch in wheat. However, release of ammonia into the incubation medium was markedly reduced (p<0.05), suggesting that micronization increased the resistance of protein to microbial digestion. Disappearances of DM, protein and starch differed (p = 0.001) among cereal grains with wheat>barley>corn. Micronization reduced the rate of DM disappearance (p = 0.011) and slowly degradable protein fractions (p = 0.03), however, increased (p = 0.004) slowly degradable starch fractions of all three cereals. Examination of in situ samples by scanning electron microscopy confirmed that microbial colonization focused on starch granules in micronized grains, and that the protein matrix exhibited resistance to microbial colonization. These results suggest that micronization may be used to increase the ruminal escape value of protein in cereal grains, but may lead to increased starch digestion if grains are finely ground.
 Cited by
gas production kinetics of wheat genotypes, Journal of Animal Physiology and Animal Nutrition, 2016, 101, 4, 779  crossref(new windwow)
Effect of High-Temperature Short-Time ‘Micronization’ of Grains on Product Quality and Cooking Characteristics, Food Engineering Reviews, 2016, 8, 2, 201  crossref(new windwow)
Aimone, J. C. and D. G. Wagner. 1977. Micronized wheat. II. Influence on in vitro digestibility, in vitro gas production and gelatinization. J. Anim. Sci. 44:1096-1099.

American Association of Cereal Chemists (AOAC). 1983. Approved Methods of the American Association of Cereal Chemists. Method 39-70A, St. Paul, MN.

Association of Official Analytical Chemists (AOAC). 1984. Official methods of analysis. 14th ed. AOAC, Washington, DC.

Bae, H. D., T. A. McAllister, E. G. Kokko, F. L. Leggett, L. J. Yanke, K. D. Jakober, J. K. Ha, H. T. Shin and K.-J. Cheng. 1997. Effect of silica on the colonization of rice straw by ruminal bacteria. Anim. Feed Sci. Technol. 65:165-181. crossref(new window)

Barlow, K. K., M. S. Buttrose, D. H. Simmonds and M. Vesk. 1973. The nature of the starch-protein in wheat endosperm. J. Am. Assoc. Cereal Chem. 50:443-454.

Boss, D. L. and J. G. Bowman. 1996. Barley varieties for finishing steers: II. Ruminal characteristics and rate, site and extent of digestion. J. Anim. Sci. 74:1973-1981.

Bowland, J. P. 1974. Composition of several wheat cultivars and a barley cultivar in diets for young pigs. Can. J. Anim. Sci. 54:629-638. crossref(new window)

Bowman, J. G. P., T. K. Blake, M. M. Surber, D. K. Habernicht and H. Bockelman. 2001. Feed-quality variation in the barley core collection of the USDA National Small Grains Collection. Crop Sci. 41:863-870. crossref(new window)

Bris, E. J. and I. A. Dyer. 1967. New varieties of wheat for bovine finishing rations. Bulletin 682, Washington Agriculture Experimental Station, Washington State University, Pullman, WA.

Canadian Council on Animal Care (CCAC). 1993. Guide to the care and use of experimental animals, in: (Ed. E. D. Olfert, B. M. Cross and A. A. McWilliam), Ottawa, ON.

Chantret, N., J. Salse, F. Sabot, S. Rahman, A. Bellec, B. Laubin, I. Dubois, C. Dossat, P. Sourdille, P. Joudrier, M.-F. Gautier, L. Cattolico, M. Beckert, S. Aubourg, J. Weissenbach, M. Caboche, M. Bernard, P. Leroy and B. Chalhoub. 2005. Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploidy wheat species (Triticum and Aegilops). Plant Cell. 17:1033-1045. crossref(new window)

Cheng, K.-J., T. A. McAllister, J. D. Popp, A. N. Hristov, Z. Mir, and H. T. Shin. 1998. A review of bloat in feedlot cattle. J. Anim. Sci. 76:299-308.

Chiang, B. Y. and J. A. Johnson. 1977. Measurement of total and gelatinized starch by glucoamylase and o-toluidine reagent. Cereal Chem. 54:429-443.

Croka, D. C. and D. C. Wagner. 1975. Micronized sorghum grain. II. Influence on in vitro digestibility, in vitro gas production and gelatinization. J. Anim. Sci. 40:931-935.

DiLorenzo, N. and M. L. Galyean. 2010. Applying technology with newer feed ingredients in feedlot diets: Do the old paragigms apply? J. Anim. Sci. (E. Suppl.) E123-E132.

Douglas, J. H., T. W. Sullivan, R. Abdul-Kadir and J. J. Rupnov. 1991. Influence of infrared (micronization) treatment on the nutritional value of corn and low- and high-tannin sorghum. Poult. Sci. 70:1534-1539. crossref(new window)

Herrera-Saldana, R. E., J. T. Huber and M. H. Poore. 1990. Dry matter, crude protein, and starch degradability of five cereal grains. J. Dairy Sci. 73:2386-2393. crossref(new window)

Hibberd, C. A., D. G. Wagner, R. L. Schemm, E. D. Jr. Mitchell, D. E. Weibel and R. L. Hintz. 1982. Digestibility characteristics of isolated starch from sorghum and corn grain. J. Anim. Sci. 55:1490-1497.

Kotarski, S. F., R. D. Waniska and K. K. Thurn. 1992. Starch hydrolysis by the ruminal micro flora. J. Nutr. 122:178-190.

Lanzas, C., D. G. Fox and A. N. Pell. 2007. Digestion kinetics of dried cereal grains. Anim. Feed Sci. Technol. 136:265-280. crossref(new window)

McAllister, T. A., L. M. Rode, D. J. Major, K.-J. Cheng and J. G. Buchanan-Smith. 1990. Effect of ruminal microbial colonization on cereal grain digestion. Can. J. Anim. Sci. 70:571-579. crossref(new window)

McCurdy, S. M. 1992. Infrared processing of dry peas, canola, and canola screenings. J. Food Sci. 57:941-944. crossref(new window)

McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43:99-109.

McNeill, J. W., G. D. Potter, J. K. Riggs and L. W. Rooney. 1975. Chemical and physical properties of processed sorghum grain carbohydrates. J. Anim. Sci. 40:335-341.

Mendoza, G. D., R. A. Britton and R. A. Stock. 1993. Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation. J. Anim. Sci. 71:1572-1578.

Mercier, C. 1971. Effects of various U.S. grain processes on the alteration and in vitro digestibility of starch granule. Feedstuffs. 43:33-47.

Metussin, R., I. Alli and S. Kermasha. 1992. Micronization effects on composition and properties of tofu. J. Food Sci. 57:418-422. crossref(new window)

Morris, C. F. 2002. Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol. Bio. 48:633-647. crossref(new window)

Mustafa, A. F., J. J. McKinnon, D. A. Christensen and T. He. 2002. Effect of micronization of flaxseed on nutrient disappearance in the gastrointestinal tract of steers. Can. J. Anim. Sci. 95:123-132.

Niu, Z. Y., H. L. Classen and T. A. Scott. 2003. Effects of micronization, tempering, and flaking on the chemical characteristics of wheat and its feeding value for broiler chicks. Can. J. Anim. Sci. 83:113-121. crossref(new window)

Nordin, M. and R. C. Campling. 1976. Digestibility studies with cows given whole and rolled cereal grains. Anim. Prod. 23:305-313. crossref(new window)

Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. (Camb.) 92:499-503. crossref(new window)

Owens, F. N., D. S. Secrist, W. J. Hill and D. R. Gill. 1997. The effect of grain source and grain processing on performance of feedlot cattle: a review. J. Anim. Sci. 75:868-879.

Owens, F. N., D. S. Secrist, W. J. Hill and D. R. Gill. 1998. Acidosis in cattle: a review. J. Anim. Sci. 76:275-286.

Philippeau, C., F. Le Deschault de Monredon and B. Michalet-Doreau. 1999. Relationship between ruminal starch degradation and the physical characteristics of corn grain. J. Anim. Sci. 77:238-243.

SAS Institute. 2007. SAS/STAT Users Guide. SAS Inst., Inc., Cary, NC.

Shiau, S. Y. and S. P. Yang. 1982. Effect of micronizing temperature on the nutritive value of sorghum. J. Food Sci. 47:965-968. crossref(new window)

South, J. B. and A. R. Ross. 1993. Evaluation of cereal quality for micronising. Aspects Appl. Biol. 36:433-442.

Streeter, M. N., D. G. Wagner, C. A. Hibberd and F. N. Owens. 1990. Comparison of corn with four sorghum grain hybrids: site and extent of digestion in steers. J. Anim. Sci. 68:3429-3440.

Swan, C. G., J. G. P. Bowman, J. M. Martin and M. J. Giroux. 2006. Increased puroindoline levels slow ruminal digestion of wheat (Triticum aestivum L.) starch by cattle. J. Anim. Sci. 84:641-650.

Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. crossref(new window)

Varner, L. W. and W. Woods. 1975. Influence of wheat variety upon in vitro and in vivo lactate levels. J. Anim. Sci. 41:900-905.

Wang, Y., T. A. McAllister, L. J. Yanke, Z. J. Xu, P. R. Cheeke and K.-J. Cheng. 2000. In vitro effects of steroidal saponins from Yucca schidigera extract on rumen microbial protein synthesis and ruminal fermentation. J. Sci. Food Agric. 80:2114-2122. crossref(new window)

Wang, Y., T. A. McAllister, D. R. Zobell, M. D. Pickard, L. M. Road, Z. Mir and K.-J. Cheng. 1997. The effect of micronization of full-fat canola seed on digestion in the rumen and total tract of dairy cows. Can. J. Anim. Sci. 77:431-440. crossref(new window)

Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39:971-974. crossref(new window)

White, G. A., F. J. Doucet, S. E. Hill and J. Wiseman. 2008. Physicochemical changes to starch granules during micronisation and extrusion processing of wheat, and their implications for starch digestibility in the newly weaned piglet. Animal 2:1312-1323.

Zarkadas, L. N. and J. Wiseman. 2001. Influence of processing variables during micronization of wheat on starch structure and subsequent performance and digestibility in weaned piglets feed wheat-based diets. Anim. Feed Sci. Technol. 93:93-107. crossref(new window)