JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Dietary Protein Restriction Alters Lipid Metabolism and Insulin Sensitivity in Rats
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Dietary Protein Restriction Alters Lipid Metabolism and Insulin Sensitivity in Rats
Kang, W.; Lee, M.S.; Baik, M.;
  PDF(new window)
 Abstract
Dietary protein restriction affects lipid metabolism in rats. This study was performed to determine the effect of a low protein diet on hepatic lipid metabolism and insulin sensitivity in growing male rats. Growing rats were fed either a control 20% protein diet or an 8% low protein diet. Feeding a low protein diet for four weeks from 8 weeks of age induced a fatty liver. Expression of acetyl-CoA carboxylase, a key lipogenic enzyme, was increased in rats fed a low protein diet. Feeding a low protein diet decreased very low density lipoprotein (VLDL) secretion without statistical significance. Feeding a low protein diet down-regulated protein expression of microsomal triglyceride transfer protein, an important enzyme of VLDL secretion. Feeding a low protein diet increased serum adiponectin levels. We performed glucose tolerance test (GTT) and insulin tolerance test (ITT). Both GTT and ITT were increased in protein-restricted growing rats. Our results demonstrate that dietary protein restriction increases insulin sensitivity and that this could be due to low-protein diet-mediated metabolic adaptation. In addition, increased adiponectin levels may influences insulin sensitivity. In conclusion, dietary protein restriction induces a fatty liver. Both increased lipogenesis and decreased VLDL secretion has contributed to this metabolic changes. In addition, insulin resistance was not associated with fatty liver induced by protein restriction.
 Keywords
Dietary Protein Restriction;Fatty Liver;Lipid Metabolism;Insulin Sensitivity;
 Language
English
 Cited by
1.
Growth, survival and the histology of the digestive tract of juvenileOsteoglossum bicirrhosum(Cuvier, 1829) fed three diets containing different protein and lipid levels, Journal of Applied Ichthyology, 2015, 31, 67  crossref(new windwow)
2.
Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats, Scientific Reports, 2016, 6, 20036  crossref(new windwow)
 References
1.
Aparecida de Franca, S., M. P. Dos Santos, M. A. Garofalo, L. C. Navegantes, C. Kettelhut Ido, C. F. Lopes and N. H. Kawashita. 2009. Low protein diet changes the energetic balance and sympathetic activity in brown adipose tissue of growing rats. Nutrition 25:1186-1192. crossref(new window)

2.
Ascaso, J. F. 2010. Advances in cholesterol-lowering interventions. Endocrinol. Nutr. 57:210-219. crossref(new window)

3.
Atkinson, L. L., S. E. Kelly, J. C. Russell, J. Bar-Tana and G. D. Lopaschuk. 2002. MEDICA 16 inhibits hepatic acetyl-CoA carboxylase and reduces plasma triacylglycerol levels in insulin-resistant JCR: LA-cp rats. Diabetes 51:1548-1555. crossref(new window)

4.
Begriche, K., A. Igoudjil, D. Pessayre and B. Fromenty. 2006. Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 6:1-28.

5.
Cano, A., F. Ciaffoni, G. M. Safwat, P. Aspichueta, B. Ochoa, E. Bravo and K. M. Botham. 2009. Hepatic VLDL assembly is disturbed in a rat model of nonalcoholic fatty liver disease: is there a role for dietary coenzyme Q? J. Appl. Physiol. 107:707-717.

6.
Chang, B. H., W. Liao, L. Li, M. Nakamuta, D. Mack and L. Chan. 1999. Liver-specific inactivation of the abetalipoproteinemia gene completely abrogates very low density lipoprotein/low density lipoprotein production in a viable conditional knockout mouse. J. Biol. Chem. 274:6051-6055. crossref(new window)

7.
del Rincon, J. P., K. Iida, B. D. Gaylinn, C. E. McCurdy, J. W. Leitner, L. A. Barbour, J. J. Kopchick, J. E. Friedman, B. Draznin and M. O. Thorner. 2007. Growth hormone regulation of p85alpha expression and phosphoinositide 3-kinase activity in adipose tissue: mechanism for growth hormone-mediated insulin resistance. Diabetes 56:1638-1646. crossref(new window)

8.
Fiaschi, T., F. Buricchi, G. Cozzi, S. Matthias, M. Parri, G. Raugei, G. Ramponi and P. Chiarugi. 2007. Redox-dependent and ligand-independent trans-activation of insulin receptor by globular adiponectin. Hepatology 46:130-139. crossref(new window)

9.
Folch, J., M. Lees and G. H. Sloane Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-509.

10.
Fujita, K., Y. Nozaki, K. Wada, M. Yoneda, Y. Fujimoto, M. Fujitake, H. Endo, H. Takahashi, M. Inamori, N. Kobayashi, H. Kirikoshi, K. Kubota, S. Saito and A. Nakajima. 2009. Dysfunctional very-low-density lipoprotein synthesis and release is a key factor in nonalcoholic steatohepatitis pathogenesis. Hepatology 50:772-780. crossref(new window)

11.
Ikejima, K., K. Okumura, K. Kon, Y. Takei and N. Sato. 2007. Role of adipocytokines in hepatic fibrogenesis. J. Gastroenterol. Hepatol. Suppl. 1:S87-92.

12.
Kim, J. Y., E. van de Wall, M. Laplante, A. Azzara, M. E. Trujillo, S. M. Hofmann, T. Schraw, J. L. Durand, H. Li, G. Li, L. A. Jeilcks, M. F. Mehier, D. Y. Hui, Y. Deshaies, G. I. Shulman, G. J. Schwartz and P. E. Scherer. 2007. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117:2621-2637. crossref(new window)

13.
Marchesini, G. and G. Forlani. 2002. NASH: from liver diseases to metabolic disorders and back to clinical hepatology. Hepatology 35:497-499. crossref(new window)

14.
Marra, F. and C. Bertolani. 2009. Adipokines in liver diseases. Hepatology 50:957-969. crossref(new window)

15.
Minehira, K., S. G. Young, C. J. Villanueva, L. Yetukuri, M. Oresic, M. K. Hellerstein, R. V. jr Farese, J. D. Horton, F. Preitner, B. Thorens and L. Tappy. 2008. Blocking VLDL secretion causes hepatic steatosis but does not affect peripheral lipid stores or insulin sensitivity in mice. J. Lipid Res. 49:2038-2044. crossref(new window)

16.
Morris, L., D. Arata and D. C. Cederquist. 1965. Fatty livers in weanling rats fed a low protein, threonine-deficient diet. I. Effect of various diet fats. J. Nutr. 85:362-366.

17.
Postic, C. and J. Girard. 2008. The role of the lipogenic pathway in the development of hepatic steatosis. Diabetes Metab. 34:643-648. crossref(new window)

18.
Rothwell, N. J., M. J. Stock and R. S. Tyzbir. 1983. Mechanisms of thermogenesis induced by low protein diets. Metabolism 32:257-261. crossref(new window)

19.
Singal, S. A., S. J. Hazan, V. P. Sydenstricker and J. M. Littlejohn. 1953. The production of fatty livers in rats on threonine-and lysine-deficient diets. J. Biol. Chem. 200:867-874.

20.
Therond, P. 2009. Catabolism of lipoproteins and metabolic syndrome. Curr. Opin. Clin. Nutr. Metab. Care 12:366-371. crossref(new window)

21.
Theys, N., T. Bouckenooghe, M. T. Ahn, C. Remacle and B. Reusens. 2009. Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:1516-1525. crossref(new window)

22.
Thonney, M. L. amd D. A. Ross. 1987. Composition of gain of rats fed low or high protein diets and grown at controlled rates from 80 to 205 grams. J. Nutr. 117:2135-2141.

23.
Tilg, H. and G. S. Hotamisligil. 2006. Nonalcoholic fatty liver disease: Cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology 131:934-945. crossref(new window)

24.
White, B. D., B. He, R. G. Dean and R. J. Martin. 1994. Low protein diets increase neuropeptide Y gene expression in the basomedial hypothalamus of rats. J. Nutr. 124:1152-1160.

25.
White, B. D., M. H. Porter and R. J. Martin. 2000a. Effects of age on the feeding response to moderately low dietary protein in rats. Physiol. Behav. 68:673-681. crossref(new window)

26.
White, B. D., M. H. Porter and R. J. Martin. 2000b. Protein selection, food intake, and body composition in response to the amount of dietary protein. Physiol. Behav. 69:383-598. crossref(new window)

27.
Yamaguchi, K., L. Yang, S. McCall, J. Huang, X. X. Yu, S. K. Pandey, S. Bhanot, B. P. Monia, Y. X. Li and A. M. Diehl. 2007. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45:1366-1374. crossref(new window)

28.
Yan, X., F. Zhang, D. Li, X. Zhu and Z. Jia. 2010. Effects of chromium on energy metabolism in lambs fed with different dietary protein levels. Asian-Aust. J. Anim. Sci. 23:205-212.